Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
5 |
from tqdm import tqdm
|
6 |
import uvicorn
|
7 |
from dotenv import load_dotenv
|
|
|
8 |
import re
|
9 |
import spaces
|
10 |
|
@@ -43,28 +44,30 @@ class ModelManager:
|
|
43 |
self.models = []
|
44 |
self.loaded = False
|
45 |
|
46 |
-
@spaces.GPU(duration=0)
|
47 |
def load_model(self, model_config):
|
48 |
print(f"Cargando modelo: {model_config['name']}...")
|
49 |
return {"model": Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename']), "name": model_config['name']}
|
50 |
|
51 |
-
@spaces.GPU(duration=0)
|
52 |
def load_all_models(self):
|
53 |
if self.loaded:
|
|
|
54 |
return self.models
|
55 |
|
|
|
56 |
with ThreadPoolExecutor() as executor:
|
57 |
futures = [executor.submit(self.load_model, config) for config in model_configs]
|
58 |
models = []
|
59 |
-
for future in as_completed(futures):
|
60 |
try:
|
61 |
model = future.result()
|
62 |
models.append(model)
|
|
|
63 |
except Exception as e:
|
64 |
-
|
65 |
|
66 |
self.models = models
|
67 |
self.loaded = True
|
|
|
68 |
return self.models
|
69 |
|
70 |
model_manager = ModelManager()
|
@@ -115,6 +118,7 @@ def remove_repetitive_responses(responses):
|
|
115 |
return unique_responses
|
116 |
|
117 |
def select_best_response(responses):
|
|
|
118 |
responses = remove_repetitive_responses(responses)
|
119 |
responses = [remove_duplicates(response['response']) for response in responses]
|
120 |
unique_responses = list(dict.fromkeys(responses))
|
@@ -126,6 +130,8 @@ async def generate_chat(request: ChatRequest):
|
|
126 |
if not request.message.strip():
|
127 |
raise HTTPException(status_code=400, detail="The message cannot be empty.")
|
128 |
|
|
|
|
|
129 |
responses = []
|
130 |
num_models = len(global_data['models'])
|
131 |
|
@@ -136,12 +142,14 @@ async def generate_chat(request: ChatRequest):
|
|
136 |
response = future.result()
|
137 |
responses.append(response)
|
138 |
except Exception as exc:
|
139 |
-
|
140 |
|
141 |
if not responses:
|
142 |
raise HTTPException(status_code=500, detail="Error: No se generaron respuestas.")
|
143 |
|
144 |
best_response = select_best_response(responses)
|
|
|
|
|
145 |
|
146 |
return {
|
147 |
"best_response": best_response,
|
@@ -149,4 +157,4 @@ async def generate_chat(request: ChatRequest):
|
|
149 |
}
|
150 |
|
151 |
if __name__ == "__main__":
|
152 |
-
uvicorn.run(app, host="0.0.0.0", port=
|
|
|
5 |
from tqdm import tqdm
|
6 |
import uvicorn
|
7 |
from dotenv import load_dotenv
|
8 |
+
from difflib import SequenceMatcher
|
9 |
import re
|
10 |
import spaces
|
11 |
|
|
|
44 |
self.models = []
|
45 |
self.loaded = False
|
46 |
|
|
|
47 |
def load_model(self, model_config):
|
48 |
print(f"Cargando modelo: {model_config['name']}...")
|
49 |
return {"model": Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename']), "name": model_config['name']}
|
50 |
|
|
|
51 |
def load_all_models(self):
|
52 |
if self.loaded:
|
53 |
+
print("Modelos ya están cargados. No es necesario volver a cargarlos.")
|
54 |
return self.models
|
55 |
|
56 |
+
print("Iniciando carga de modelos...")
|
57 |
with ThreadPoolExecutor() as executor:
|
58 |
futures = [executor.submit(self.load_model, config) for config in model_configs]
|
59 |
models = []
|
60 |
+
for future in tqdm(as_completed(futures), total=len(model_configs), desc="Cargando modelos", unit="modelo"):
|
61 |
try:
|
62 |
model = future.result()
|
63 |
models.append(model)
|
64 |
+
print(f"Modelo cargado exitosamente: {model['name']}")
|
65 |
except Exception as e:
|
66 |
+
print(f"Error al cargar el modelo: {e}")
|
67 |
|
68 |
self.models = models
|
69 |
self.loaded = True
|
70 |
+
print("Todos los modelos han sido cargados.")
|
71 |
return self.models
|
72 |
|
73 |
model_manager = ModelManager()
|
|
|
118 |
return unique_responses
|
119 |
|
120 |
def select_best_response(responses):
|
121 |
+
print("Filtrando respuestas...")
|
122 |
responses = remove_repetitive_responses(responses)
|
123 |
responses = [remove_duplicates(response['response']) for response in responses]
|
124 |
unique_responses = list(dict.fromkeys(responses))
|
|
|
130 |
if not request.message.strip():
|
131 |
raise HTTPException(status_code=400, detail="The message cannot be empty.")
|
132 |
|
133 |
+
print(f"Procesando solicitud: {request.message}")
|
134 |
+
|
135 |
responses = []
|
136 |
num_models = len(global_data['models'])
|
137 |
|
|
|
142 |
response = future.result()
|
143 |
responses.append(response)
|
144 |
except Exception as exc:
|
145 |
+
print(f"Error en la generación de respuesta: {exc}")
|
146 |
|
147 |
if not responses:
|
148 |
raise HTTPException(status_code=500, detail="Error: No se generaron respuestas.")
|
149 |
|
150 |
best_response = select_best_response(responses)
|
151 |
+
|
152 |
+
print(f"Mejor respuesta seleccionada: {best_response}")
|
153 |
|
154 |
return {
|
155 |
"best_response": best_response,
|
|
|
157 |
}
|
158 |
|
159 |
if __name__ == "__main__":
|
160 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|