Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,680 Bytes
87928b2 a81956f 87928b2 b560d3f 87928b2 b560d3f 87928b2 b560d3f 87928b2 b560d3f 87928b2 b560d3f a81956f b560d3f a81956f b560d3f 87928b2 a81956f 87928b2 a81956f 87928b2 a81956f b560d3f a81956f b560d3f 87928b2 b560d3f 87928b2 b560d3f 87928b2 b560d3f a81956f b560d3f a81956f b560d3f a81956f b560d3f a81956f 87928b2 b560d3f 87928b2 a81956f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from llama_cpp import Llama
from concurrent.futures import ThreadPoolExecutor, as_completed
from tqdm import tqdm
import uvicorn
from dotenv import load_dotenv
from difflib import SequenceMatcher
import re
import spaces
load_dotenv()
app = FastAPI()
global_data = {
'models': []
}
model_configs = [
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-q2_k.gguf", "name": "Meta Llama 3.1-70B"},
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"},
{"repo_id": "Ffftdtd5dtft/Hermes-3-Llama-3.1-8B-IQ1_S-GGUF", "filename": "hermes-3-llama-3.1-8b-iq1_s-imat.gguf", "name": "Hermes 3 Llama 3.1-8B"},
{"repo_id": "Ffftdtd5dtft/Phi-3.5-mini-instruct-Q2_K-GGUF", "filename": "phi-3.5-mini-instruct-q2_k.gguf", "name": "Phi 3.5 Mini Instruct"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-70B Instruct"},
{"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"},
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-IQ2_XXS-GGUF", "filename": "phi-3-mini-128k-instruct-iq2_xxs-imat.gguf", "name": "Phi 3 Mini 128K Instruct XXS"},
{"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf", "name": "TinyLlama 1.1B Chat"},
{"repo_id": "Ffftdtd5dtft/Mistral-NeMo-Minitron-8B-Base-IQ1_S-GGUF", "filename": "mistral-nemo-minitron-8b-base-iq1_s-imat.gguf", "name": "Mistral NeMo Minitron 8B Base"},
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"}
]
class ModelManager:
def __init__(self):
self.models = []
self.loaded = False
def load_model(self, model_config):
print(f"Cargando modelo: {model_config['name']}...")
return {"model": Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename']), "name": model_config['name']}
def load_all_models(self):
if self.loaded:
print("Modelos ya están cargados. No es necesario volver a cargarlos.")
return self.models
print("Iniciando carga de modelos...")
with ThreadPoolExecutor() as executor:
futures = [executor.submit(self.load_model, config) for config in model_configs]
models = []
for future in tqdm(as_completed(futures), total=len(model_configs), desc="Cargando modelos", unit="modelo"):
try:
model = future.result()
models.append(model)
print(f"Modelo cargado exitosamente: {model['name']}")
except Exception as e:
print(f"Error al cargar el modelo: {e}")
self.models = models
self.loaded = True
print("Todos los modelos han sido cargados.")
return self.models
model_manager = ModelManager()
global_data['models'] = model_manager.load_all_models()
class ChatRequest(BaseModel):
message: str
top_k: int = 50
top_p: float = 0.95
temperature: float = 0.7
@spaces.GPU(duration=0)
def generate_chat_response(request, model_data):
try:
user_input = normalize_input(request.message)
llm = model_data['model']
response = llm.create_chat_completion(
messages=[{"role": "user", "content": user_input}],
top_k=request.top_k,
top_p=request.top_p,
temperature=request.temperature
)
reply = response['choices'][0]['message']['content']
return {"response": reply, "literal": user_input, "model_name": model_data['name']}
except Exception as e:
return {"response": f"Error: {str(e)}", "literal": user_input, "model_name": model_data['name']}
def normalize_input(input_text):
return input_text.strip()
def remove_duplicates(text):
text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text)
text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text)
text = text.replace('[/INST]', '')
lines = text.split('\n')
unique_lines = list(dict.fromkeys(lines))
return '\n'.join(unique_lines).strip()
def remove_repetitive_responses(responses):
seen = set()
unique_responses = []
for response in responses:
normalized_response = remove_duplicates(response['response'])
if normalized_response not in seen:
seen.add(normalized_response)
unique_responses.append(response)
return unique_responses
def select_best_response(responses):
print("Filtrando respuestas...")
responses = remove_repetitive_responses(responses)
responses = [remove_duplicates(response['response']) for response in responses]
unique_responses = list(dict.fromkeys(responses))
sorted_responses = sorted(unique_responses, key=lambda r: len(r), reverse=True)
return sorted_responses[0]
@app.post("/generate_chat")
async def generate_chat(request: ChatRequest):
if not request.message.strip():
raise HTTPException(status_code=400, detail="The message cannot be empty.")
print(f"Procesando solicitud: {request.message}")
responses = []
num_models = len(global_data['models'])
with ThreadPoolExecutor() as executor:
futures = [executor.submit(generate_chat_response, request, model_data) for model_data in global_data['models']]
for future in tqdm(as_completed(futures), total=num_models, desc="Generando respuestas", unit="modelo"):
try:
response = future.result()
responses.append(response)
except Exception as exc:
print(f"Error en la generación de respuesta: {exc}")
if not responses:
raise HTTPException(status_code=500, detail="Error: No se generaron respuestas.")
best_response = select_best_response(responses)
print(f"Mejor respuesta seleccionada: {best_response}")
return {
"best_response": best_response,
"all_responses": responses
}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860) |