Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from diffusers import DiffusionPipeline, DDIMScheduler | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
scheduler = DDIMScheduler.from_pretrained('li-yan/diffusion-aurora-256') | |
scheduler.set_timesteps(num_inference_steps=20) | |
pipeline = DiffusionPipeline.from_pretrained( | |
'li-yan/diffusion-aurora-256', scheduler=scheduler).to(device) | |
def image_gen(name): | |
images = pipeline(num_inference_steps=20).images | |
return images[0] | |
css = ".output-image, .input-image, .image-preview {height: 256px !important}" | |
demo = gr.Interface(fn=image_gen, inputs=None, outputs="image", css=css) | |
demo.launch() | |