File size: 653 Bytes
43f4c40
0e59027
2c5ac74
43f4c40
0e59027
 
2c5ac74
c7fbd0c
43f4c40
2c5ac74
0e59027
2c5ac74
 
c7fbd0c
2c5ac74
 
5470855
28e6e70
 
ba6be62
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import gradio as gr
import torch
from diffusers import DiffusionPipeline, DDIMScheduler

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

scheduler = DDIMScheduler.from_pretrained('li-yan/diffusion-aurora-256')
scheduler.set_timesteps(num_inference_steps=20)

pipeline = DiffusionPipeline.from_pretrained(
    'li-yan/diffusion-aurora-256', scheduler=scheduler).to(device)

def image_gen(name):
	images = pipeline(num_inference_steps=20).images
	return images[0]

css = ".output-image, .input-image, .image-preview {height: 256px !important}"

demo = gr.Interface(fn=image_gen, inputs=None, outputs="image", css=css)
demo.launch()