|
import gradio as gr |
|
from transformers import AutoModelForQuestionAnswering, pipeline,AutoTokenizer |
|
import torch |
|
def question_answer(context, question): |
|
AUTH_TOKEN = "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" |
|
model_checkpoint = "letrunglinh/qa_pnc" |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, use_auth_token=AUTH_TOKEN) |
|
model = AutoModelForQuestionAnswering.from_pretrained(model_checkpoint) |
|
model = pipeline('question-answering', model=model, |
|
tokenizer=tokenizer, use_auth_token=AUTH_TOKEN) |
|
to_predict = [ |
|
{ |
|
"question": question, |
|
"context": context, |
|
} |
|
] |
|
answers = model(to_predict) |
|
return answers['answer'], answers['score'] |
|
|
|
gr.Interface(fn=question_answer, inputs=["text", "text"], outputs=["textbox","textbox"], share = True).launch() |