import gradio as gr from transformers import AutoModelForQuestionAnswering, pipeline,AutoTokenizer import torch def question_answer(context, question): AUTH_TOKEN = "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" model_checkpoint = "letrunglinh/qa_pnc" device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, use_auth_token=AUTH_TOKEN) model = AutoModelForQuestionAnswering.from_pretrained(model_checkpoint) model = pipeline('question-answering', model=model, tokenizer=tokenizer, use_auth_token=AUTH_TOKEN) to_predict = [ { "question": question, "context": context, } ] answers = model(to_predict) return answers['answer'], answers['score'] gr.Interface(fn=question_answer, inputs=["text", "text"], outputs=["textbox","textbox"], share = True).launch()