medipro / app.py
leolaish's picture
Update app.py
4e0fb6d verified
import os
from huggingface_hub import InferenceClient
import gradio as gr
import nltk
import torch
from transformers import DistilBertTokenizer, DistilBertModel
from duckduckgo_search import ddg
from langchain.chains import RetrievalQA
from langchain.document_loaders import UnstructuredFileLoader
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.vectorstores import Chroma
from transformers import DistilBertConfig, DistilBertModel
# Initialize tokenizer and model for embedding
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
embedding_model_name = "distilbert/distilbert-base-uncased-finetuned-sst-2-english"
DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
# Load Qwen 2 for text generation
qwen_text_gen = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Function to search the web
def search_web(query):
results = ddg(query)
web_content = ''
if results:
for result in results:
web_content += result['body']
return web_content
# Function to initialize knowledge vector store
def init_knowledge_vector_store(file):
if file is None:
return
filepath = file.name
distilbert_embedding = HuggingFaceBgeEmbeddings(model_name=embedding_model_name)
loader = UnstructuredFileLoader(filepath, mode="elements")
docs = loader.load()
Chroma.from_documents(docs, distilbert_embedding, persist_directory="./vector_store")
# Function to get knowledge vector store
def get_knowledge_vector_store():
distilbert_embedding = HuggingFaceBgeEmbeddings(model_name=embedding_model_name)
vector_store = Chroma(embedding_function=distilbert_embedding, persist_directory="./vector_store")
return vector_store
# Function to get knowledge-based answer
def get_knowledge_based_answer(query, qwen_text_gen, vector_store, VECTOR_SEARCH_TOP_K, web_content):
if web_content:
prompt_template = f"""Answer the user's question based on the following known information.
Known web search content: {web_content} """ + """
Known Content:
{context}
question:
{question}"""
else:
prompt_template = """Answer the user's question based on the known information.
Known Content:
{context}
question:
{question}"""
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
knowledge_chain = RetrievalQA.from_llm(
llm=qwen_text_gen,
retriever=vector_store.as_retriever(search_kwargs={"k": VECTOR_SEARCH_TOP_K}),
prompt=prompt
)
knowledge_chain.combine_documents_chain.document_prompt = PromptTemplate(
input_variables=["page_content"],
template="{page_content}"
)
knowledge_chain.return_source_documents = True
result = knowledge_chain.invoke({"query": query})
return result['result']
# Function to clear session
def clear_session():
return '', None
# Function to predict
def predict(input, qwen_text_gen, VECTOR_SEARCH_TOP_K, use_web, key=None, history=None):
if history == None:
history = []
vector_store = get_knowledge_vector_store()
if use_web == 'True':
web_content = search_web(query=input)
if web_content is None:
web_content = ""
else:
web_content = ''
resp = get_knowledge_based_answer(
query=input,
qwen_text_gen=qwen_text_gen,
vector_store=vector_store,
VECTOR_SEARCH_TOP_K=VECTOR_SEARCH_TOP_K,
web_content=web_content,
)
history.append((input, resp))
return '', history, history
# Gradio interface setup
block = gr.Blocks()
with block as demo:
gr.Markdown("<h1><center>Chat History </center></h1>")
with gr.Row():
with gr.Column(scale=1):
file = gr.File(label='Please upload txt, md, docx type files', file_types=['.txt', '.md', '.docx'])
get_vs = gr.Button("Generate Knowledge Base")
get_vs.click(init_knowledge_vector_store, inputs=[file])
use_web = gr.Radio(["True", "False"], label="Web Search", value="False")
VECTOR_SEARCH_TOP_K = gr.Slider(1, 10, value=5, step=1, label="vector search top k", interactive=True)
with gr.Column(scale=4):
chatbot = gr.Chatbot(label='Ming History Knowledge Question and Answer Assistant', height=600)
message = gr.Textbox(label='Please enter your question')
state = gr.State()
with gr.Row():
clear_history = gr.Button("Clear history conversation")
send = gr.Button("Send")
send.click(predict,
inputs=[message, qwen_text_gen, VECTOR_SEARCH_TOP_K, use_web, state],
outputs=[message, chatbot, state])
clear_history.click(fn=clear_session, inputs=[], outputs=[chatbot, state], queue=False)
message.submit(predict,
inputs=[message, qwen_text_gen, VECTOR_SEARCH_TOP_K, use_web, state],
outputs=[message, chatbot, state])
demo.queue().launch(share=False)