Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,138 @@
|
|
1 |
-
import
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
)
|
37 |
-
|
|
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond, title="MediPro",
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="MediPro",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
import gradio as gr
|
4 |
+
import nltk
|
5 |
+
import torch
|
6 |
+
from transformers import DistilBertTokenizer, DistilBertModel
|
7 |
+
from duckduckgo_search import ddg
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from langchain.document_loaders import UnstructuredFileLoader
|
10 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
11 |
+
from langchain.vectorstores import Chroma
|
12 |
+
from transformers import DistilBertConfig, DistilBertModel
|
13 |
+
|
14 |
+
# Initialize tokenizer and model for embedding
|
15 |
+
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
|
16 |
+
embedding_model_name = "distilbert/distilbert-base-uncased-finetuned-sst-2-english"
|
17 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
18 |
+
|
19 |
+
# Load Qwen 2 for text generation
|
20 |
+
qwen_text_gen = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
21 |
|
22 |
+
# Function to search the web
|
23 |
+
def search_web(query):
|
24 |
+
results = ddg(query)
|
25 |
+
web_content = ''
|
26 |
+
if results:
|
27 |
+
for result in results:
|
28 |
+
web_content += result['body']
|
29 |
+
return web_content
|
30 |
|
31 |
+
# Function to initialize knowledge vector store
|
32 |
+
def init_knowledge_vector_store(file):
|
33 |
+
if file is None:
|
34 |
+
return
|
35 |
+
filepath = file.name
|
36 |
+
distilbert_embedding = HuggingFaceBgeEmbeddings(model_name=embedding_model_name)
|
37 |
+
loader = UnstructuredFileLoader(filepath, mode="elements")
|
38 |
+
docs = loader.load()
|
39 |
+
Chroma.from_documents(docs, distilbert_embedding, persist_directory="./vector_store")
|
40 |
|
41 |
+
# Function to get knowledge vector store
|
42 |
+
def get_knowledge_vector_store():
|
43 |
+
distilbert_embedding = HuggingFaceBgeEmbeddings(model_name=embedding_model_name)
|
44 |
+
vector_store = Chroma(embedding_function=distilbert_embedding, persist_directory="./vector_store")
|
45 |
+
return vector_store
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# Function to get knowledge-based answer
|
48 |
+
def get_knowledge_based_answer(query, qwen_text_gen, vector_store, VECTOR_SEARCH_TOP_K, web_content):
|
49 |
+
if web_content:
|
50 |
+
prompt_template = f"""Answer the user's question based on the following known information.
|
51 |
+
Known web search content: {web_content} """ + """
|
52 |
+
Known Content:
|
53 |
+
{context}
|
54 |
+
question:
|
55 |
+
{question}"""
|
56 |
+
else:
|
57 |
+
prompt_template = """Answer the user's question based on the known information.
|
58 |
+
Known Content:
|
59 |
+
{context}
|
60 |
+
question:
|
61 |
+
{question}"""
|
62 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
63 |
+
|
64 |
+
knowledge_chain = RetrievalQA.from_llm(
|
65 |
+
llm=qwen_text_gen,
|
66 |
+
retriever=vector_store.as_retriever(search_kwargs={"k": VECTOR_SEARCH_TOP_K}),
|
67 |
+
prompt=prompt
|
68 |
+
)
|
69 |
+
|
70 |
+
knowledge_chain.combine_documents_chain.document_prompt = PromptTemplate(
|
71 |
+
input_variables=["page_content"],
|
72 |
+
template="{page_content}"
|
73 |
+
)
|
74 |
+
|
75 |
+
knowledge_chain.return_source_documents = True
|
76 |
+
|
77 |
+
result = knowledge_chain.invoke({"query": query})
|
78 |
+
|
79 |
+
return result['result']
|
80 |
|
81 |
+
# Function to clear session
|
82 |
+
def clear_session():
|
83 |
+
return '', None
|
84 |
|
85 |
+
# Function to predict
|
86 |
+
def predict(input, qwen_text_gen, VECTOR_SEARCH_TOP_K, use_web, key=None, history=None):
|
87 |
+
if history == None:
|
88 |
+
history = []
|
89 |
+
vector_store = get_knowledge_vector_store()
|
90 |
+
if use_web == 'True':
|
91 |
+
web_content = search_web(query=input)
|
92 |
+
if web_content is None:
|
93 |
+
web_content = ""
|
94 |
+
else:
|
95 |
+
web_content = ''
|
96 |
|
97 |
+
resp = get_knowledge_based_answer(
|
98 |
+
query=input,
|
99 |
+
qwen_text_gen=qwen_text_gen,
|
100 |
+
vector_store=vector_store,
|
101 |
+
VECTOR_SEARCH_TOP_K=VECTOR_SEARCH_TOP_K,
|
102 |
+
web_content=web_content,
|
103 |
+
)
|
104 |
+
history.append((input, resp))
|
105 |
+
return '', history, history
|
106 |
|
107 |
+
# Gradio interface setup
|
108 |
+
block = gr.Blocks()
|
109 |
+
with block as demo:
|
110 |
+
gr.Markdown("<h1><center>Chat History </center></h1>")
|
111 |
+
with gr.Row():
|
112 |
+
with gr.Column(scale=1):
|
113 |
+
file = gr.File(label='Please upload txt, md, docx type files', file_types=['.txt', '.md', '.docx'])
|
114 |
+
get_vs = gr.Button("Generate Knowledge Base")
|
115 |
+
get_vs.click(init_knowledge_vector_store, inputs=[file])
|
116 |
+
|
117 |
+
use_web = gr.Radio(["True", "False"], label="Web Search", value="False")
|
118 |
+
|
119 |
+
VECTOR_SEARCH_TOP_K = gr.Slider(1, 10, value=5, step=1, label="vector search top k", interactive=True)
|
120 |
|
121 |
+
with gr.Column(scale=4):
|
122 |
+
chatbot = gr.Chatbot(label='Ming History Knowledge Question and Answer Assistant', height=600)
|
123 |
+
message = gr.Textbox(label='Please enter your question')
|
124 |
+
state = gr.State()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
+
with gr.Row():
|
127 |
+
clear_history = gr.Button("Clear history conversation")
|
128 |
+
send = gr.Button("Send")
|
129 |
+
send.click(predict,
|
130 |
+
inputs=[message, qwen_text_gen, VECTOR_SEARCH_TOP_K, use_web, state],
|
131 |
+
outputs=[message, chatbot, state])
|
132 |
+
clear_history.click(fn=clear_session, inputs=[], outputs=[chatbot, state], queue=False)
|
133 |
+
|
134 |
+
message.submit(predict,
|
135 |
+
inputs=[message, qwen_text_gen, VECTOR_SEARCH_TOP_K, use_web, state],
|
136 |
+
outputs=[message, chatbot, state])
|
137 |
|
138 |
+
demo.queue().launch(share=False)
|
|