leemeng's picture
refactor: add feedback function, update ui
af43a3d
raw
history blame
7.85 kB
import gradio as gr
import os
import threading
import arrow
import time
import argparse
import logging
from dataclasses import dataclass
import torch
import sentencepiece as spm
from transformers import GPTNeoXForCausalLM, GPTNeoXConfig
from transformers.generation.streamers import BaseStreamer
from huggingface_hub import hf_hub_download, login
logger = logging.getLogger()
logger.setLevel("INFO")
gr_interface = None
@dataclass
class DefaultArgs:
hf_model_name_or_path: str = None
spm_model_path: str = None
env: str = "dev"
port: int = 7860
make_public: bool = False
if os.getenv("RUNNING_ON_HF_SPACE"):
login(token=os.getenv("HF_TOKEN"))
hf_repo = os.getenv("HF_MODEL_REPO")
args = DefaultArgs()
args.hf_model_name_or_path = hf_repo
args.spm_model_path = hf_hub_download(repo_id=hf_repo, filename="sentencepiece.model")
else:
parser = argparse.ArgumentParser(description="")
parser.add_argument("--hf_model_name_or_path", type=str, required=True)
parser.add_argument("--spm_model_path", type=str, required=True)
parser.add_argument("--env", type=str, default="dev")
parser.add_argument("--port", type=int, default=7860)
parser.add_argument("--make_public", action='store_true')
args = parser.parse_args()
def load_model(
model_dir,
):
config = GPTNeoXConfig.from_pretrained(model_dir)
config.is_decoder = True
model = GPTNeoXForCausalLM.from_pretrained(model_dir, config=config, torch_dtype=torch.bfloat16)
if torch.cuda.is_available():
model = model.to("cuda:0")
return model
logging.info("Loading model")
model = load_model(args.hf_model_name_or_path)
sp = spm.SentencePieceProcessor(model_file=args.spm_model_path)
logging.info("Finished loading model")
class SentencePieceStreamer(BaseStreamer):
def __init__(self, sp: spm.SentencePieceProcessor):
self.sp = sp
self.num_invoked = 0
self.prompt = ""
self.generated_text = ""
self.ended = False
def put(self, t: torch.Tensor):
d = t.dim()
if d == 1:
pass
elif d == 2:
t = t[0]
else:
raise NotImplementedError
t = [int(x) for x in t.numpy()]
text = self.sp.decode_ids(t)
if self.num_invoked == 0:
self.prompt = text
self.num_invoked += 1
return
self.generated_text += text
logging.debug(f"[streamer]: {self.generated_text}")
def end(self):
self.ended = True
def generate(
prompt,
max_new_tokens,
temperature,
repetition_penalty,
do_sample,
no_repeat_ngram_size,
):
log = dict(locals())
logging.debug(log)
tokens = sp.encode(prompt)
input_ids = torch.tensor(tokens, dtype=torch.long).unsqueeze(0).to(model.device)
streamer = SentencePieceStreamer(sp=sp)
max_possilbe_new_tokens = model.config.max_position_embeddings - len(tokens)
max_possilbe_new_tokens = min(max_possilbe_new_tokens, max_new_tokens)
thr = threading.Thread(target=model.generate, args=(), kwargs=dict(
input_ids=input_ids,
do_sample=do_sample,
temperature=temperature,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
max_new_tokens=max_possilbe_new_tokens,
streamer=streamer,
# max_length=4096,
# top_k=100,
# top_p=0.9,
# num_return_sequences=2,
# num_beams=2,
))
thr.start()
while not streamer.ended:
time.sleep(0.05)
yield streamer.generated_text
# TODO: optimize for final few tokens
gen = streamer.generated_text
log.update(dict(generation=gen, time=str(arrow.now("+09:00"))))
logging.info(log)
yield gen
def process_feedback(
rating,
prompt,
generation,
max_new_tokens,
temperature,
repetition_penalty,
do_sample,
no_repeat_ngram_size,
):
log = dict(locals())
log["time"] = str(arrow.now("+09:00"))
logging.info(log)
if gr_interface:
gr_interface.close(verbose=False)
with gr.Blocks() as gr_interface:
with gr.Row():
gr.Markdown("# 日本語 StableLM Pre-Alpha")
with gr.Row():
gr.Markdown("Description about this page. ホゲホゲ")
with gr.Row():
# left panel
with gr.Column(scale=1):
# generation params
with gr.Box():
gr.Markdown("パラメータ")
# hidden default params
do_sample = gr.Checkbox(True, label="Do Sample", visible=False)
no_repeat_ngram_size = gr.Slider(0, 10, value=5, step=1, label="No Repeat Ngram Size", visible=False)
# visible params
max_new_tokens = gr.Slider(
128,
min(512, model.config.max_position_embeddings),
value=128,
step=128,
label="max tokens",
info="生成するトークンの最大数を指定する",
)
temperature = gr.Slider(
0, 1, value=0.7, step=0.05, label="temperature",
info="低い値は出力をより集中させて決定論的にする")
repetition_penalty = gr.Slider(
1, 1.5, value=1.2, step=0.05, label="frequency penalty",
info="高い値はAIが繰り返す可能性を減少させる")
# grouping params for easier reference
gr_params = [
max_new_tokens,
temperature,
repetition_penalty,
do_sample,
no_repeat_ngram_size,
]
# right panel
with gr.Column(scale=2):
# user input block
with gr.Box():
textbox_prompt = gr.Textbox(
label="Human",
placeholder="AIに続きを書いて欲しいプロンプト",
interactive=True,
lines=5,
value=""
)
with gr.Box():
with gr.Row():
btn_submit = gr.Button(value="実行", variant="primary")
btn_stop = gr.Button(value="中止", variant="stop")
# model output block
with gr.Box():
textbox_generation = gr.Textbox(
label="AI",
lines=5,
value=""
)
with gr.Box():
with gr.Row():
rating_options = [
"😫すごく悪い",
"😞微妙",
"😐アリ",
"🙂合格",
"😄すごく良い",
]
btn_ratings = [gr.Button(value=v) for v in rating_options]
with gr.Box():
gr.Markdown("TODO:For more feedback link for google form")
# event handling
inputs = [textbox_prompt] + gr_params
click_event = btn_submit.click(generate, inputs, textbox_generation, queue=True)
btn_stop.click(None, None, None, cancels=click_event, queue=False)
for btn_rating in btn_ratings:
btn_rating.click(process_feedback, [btn_rating, textbox_prompt, textbox_generation] + gr_params, queue=False)
gr_interface.queue(max_size=32, concurrency_count=2)
gr_interface.launch(server_port=args.port, share=args.make_public)