Spaces:
Runtime error
Runtime error
File size: 7,848 Bytes
c74831d 54ac395 af43a3d 54ac395 c74831d 54ac395 433d9a2 54ac395 433d9a2 54ac395 af43a3d 54ac395 433d9a2 af43a3d 433d9a2 54ac395 af43a3d 54ac395 433d9a2 54ac395 433d9a2 54ac395 af43a3d 54ac395 af43a3d 54ac395 af43a3d 433d9a2 af43a3d 54ac395 af43a3d 54ac395 af43a3d 433d9a2 54ac395 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import gradio as gr
import os
import threading
import arrow
import time
import argparse
import logging
from dataclasses import dataclass
import torch
import sentencepiece as spm
from transformers import GPTNeoXForCausalLM, GPTNeoXConfig
from transformers.generation.streamers import BaseStreamer
from huggingface_hub import hf_hub_download, login
logger = logging.getLogger()
logger.setLevel("INFO")
gr_interface = None
@dataclass
class DefaultArgs:
hf_model_name_or_path: str = None
spm_model_path: str = None
env: str = "dev"
port: int = 7860
make_public: bool = False
if os.getenv("RUNNING_ON_HF_SPACE"):
login(token=os.getenv("HF_TOKEN"))
hf_repo = os.getenv("HF_MODEL_REPO")
args = DefaultArgs()
args.hf_model_name_or_path = hf_repo
args.spm_model_path = hf_hub_download(repo_id=hf_repo, filename="sentencepiece.model")
else:
parser = argparse.ArgumentParser(description="")
parser.add_argument("--hf_model_name_or_path", type=str, required=True)
parser.add_argument("--spm_model_path", type=str, required=True)
parser.add_argument("--env", type=str, default="dev")
parser.add_argument("--port", type=int, default=7860)
parser.add_argument("--make_public", action='store_true')
args = parser.parse_args()
def load_model(
model_dir,
):
config = GPTNeoXConfig.from_pretrained(model_dir)
config.is_decoder = True
model = GPTNeoXForCausalLM.from_pretrained(model_dir, config=config, torch_dtype=torch.bfloat16)
if torch.cuda.is_available():
model = model.to("cuda:0")
return model
logging.info("Loading model")
model = load_model(args.hf_model_name_or_path)
sp = spm.SentencePieceProcessor(model_file=args.spm_model_path)
logging.info("Finished loading model")
class SentencePieceStreamer(BaseStreamer):
def __init__(self, sp: spm.SentencePieceProcessor):
self.sp = sp
self.num_invoked = 0
self.prompt = ""
self.generated_text = ""
self.ended = False
def put(self, t: torch.Tensor):
d = t.dim()
if d == 1:
pass
elif d == 2:
t = t[0]
else:
raise NotImplementedError
t = [int(x) for x in t.numpy()]
text = self.sp.decode_ids(t)
if self.num_invoked == 0:
self.prompt = text
self.num_invoked += 1
return
self.generated_text += text
logging.debug(f"[streamer]: {self.generated_text}")
def end(self):
self.ended = True
def generate(
prompt,
max_new_tokens,
temperature,
repetition_penalty,
do_sample,
no_repeat_ngram_size,
):
log = dict(locals())
logging.debug(log)
tokens = sp.encode(prompt)
input_ids = torch.tensor(tokens, dtype=torch.long).unsqueeze(0).to(model.device)
streamer = SentencePieceStreamer(sp=sp)
max_possilbe_new_tokens = model.config.max_position_embeddings - len(tokens)
max_possilbe_new_tokens = min(max_possilbe_new_tokens, max_new_tokens)
thr = threading.Thread(target=model.generate, args=(), kwargs=dict(
input_ids=input_ids,
do_sample=do_sample,
temperature=temperature,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
max_new_tokens=max_possilbe_new_tokens,
streamer=streamer,
# max_length=4096,
# top_k=100,
# top_p=0.9,
# num_return_sequences=2,
# num_beams=2,
))
thr.start()
while not streamer.ended:
time.sleep(0.05)
yield streamer.generated_text
# TODO: optimize for final few tokens
gen = streamer.generated_text
log.update(dict(generation=gen, time=str(arrow.now("+09:00"))))
logging.info(log)
yield gen
def process_feedback(
rating,
prompt,
generation,
max_new_tokens,
temperature,
repetition_penalty,
do_sample,
no_repeat_ngram_size,
):
log = dict(locals())
log["time"] = str(arrow.now("+09:00"))
logging.info(log)
if gr_interface:
gr_interface.close(verbose=False)
with gr.Blocks() as gr_interface:
with gr.Row():
gr.Markdown("# 日本語 StableLM Pre-Alpha")
with gr.Row():
gr.Markdown("Description about this page. ホゲホゲ")
with gr.Row():
# left panel
with gr.Column(scale=1):
# generation params
with gr.Box():
gr.Markdown("パラメータ")
# hidden default params
do_sample = gr.Checkbox(True, label="Do Sample", visible=False)
no_repeat_ngram_size = gr.Slider(0, 10, value=5, step=1, label="No Repeat Ngram Size", visible=False)
# visible params
max_new_tokens = gr.Slider(
128,
min(512, model.config.max_position_embeddings),
value=128,
step=128,
label="max tokens",
info="生成するトークンの最大数を指定する",
)
temperature = gr.Slider(
0, 1, value=0.7, step=0.05, label="temperature",
info="低い値は出力をより集中させて決定論的にする")
repetition_penalty = gr.Slider(
1, 1.5, value=1.2, step=0.05, label="frequency penalty",
info="高い値はAIが繰り返す可能性を減少させる")
# grouping params for easier reference
gr_params = [
max_new_tokens,
temperature,
repetition_penalty,
do_sample,
no_repeat_ngram_size,
]
# right panel
with gr.Column(scale=2):
# user input block
with gr.Box():
textbox_prompt = gr.Textbox(
label="Human",
placeholder="AIに続きを書いて欲しいプロンプト",
interactive=True,
lines=5,
value=""
)
with gr.Box():
with gr.Row():
btn_submit = gr.Button(value="実行", variant="primary")
btn_stop = gr.Button(value="中止", variant="stop")
# model output block
with gr.Box():
textbox_generation = gr.Textbox(
label="AI",
lines=5,
value=""
)
with gr.Box():
with gr.Row():
rating_options = [
"😫すごく悪い",
"😞微妙",
"😐アリ",
"🙂合格",
"😄すごく良い",
]
btn_ratings = [gr.Button(value=v) for v in rating_options]
with gr.Box():
gr.Markdown("TODO:For more feedback link for google form")
# event handling
inputs = [textbox_prompt] + gr_params
click_event = btn_submit.click(generate, inputs, textbox_generation, queue=True)
btn_stop.click(None, None, None, cancels=click_event, queue=False)
for btn_rating in btn_ratings:
btn_rating.click(process_feedback, [btn_rating, textbox_prompt, textbox_generation] + gr_params, queue=False)
gr_interface.queue(max_size=32, concurrency_count=2)
gr_interface.launch(server_port=args.port, share=args.make_public)
|