leemeng's picture
chore: simplier versioning
0292d70
raw
history blame
9.89 kB
import gradio as gr
import os
import threading
import arrow
import time
import argparse
import logging
from dataclasses import dataclass
import torch
import sentencepiece as spm
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import GPTNeoXForCausalLM, GPTNeoXConfig
from transformers.generation.streamers import BaseStreamer
from huggingface_hub import hf_hub_download, login
logger = logging.getLogger()
logger.setLevel("INFO")
gr_interface = None
VERSION = "0.1.0"
@dataclass
class DefaultArgs:
hf_model_name_or_path: str = None
hf_tokenizer_name_or_path: str = None
spm_model_path: str = None
env: str = "dev"
port: int = 7860
make_public: bool = False
if os.getenv("RUNNING_ON_HF_SPACE"):
login(token=os.getenv("HF_TOKEN"))
hf_repo = os.getenv("HF_MODEL_REPO")
args = DefaultArgs()
args.hf_model_name_or_path = hf_repo
args.hf_tokenizer_name_or_path = os.path.join(hf_repo, "tokenizer")
args.spm_model_path = hf_hub_download(repo_id=hf_repo, filename="sentencepiece.model")
else:
parser = argparse.ArgumentParser(description="")
parser.add_argument("--hf_model_name_or_path", type=str, required=True)
parser.add_argument("--hf_tokenizer_name_or_path", type=str, required=False)
parser.add_argument("--spm_model_path", type=str, required=True)
parser.add_argument("--env", type=str, default="dev")
parser.add_argument("--port", type=int, default=7860)
parser.add_argument("--make_public", action='store_true')
args = parser.parse_args()
def load_model(
model_dir,
):
config = GPTNeoXConfig.from_pretrained(model_dir)
config.is_decoder = True
model = GPTNeoXForCausalLM.from_pretrained(model_dir, config=config, torch_dtype=torch.bfloat16)
if torch.cuda.is_available():
model = model.to("cuda:0")
return model
logging.info("Loading model")
model = load_model(args.hf_model_name_or_path)
sp = spm.SentencePieceProcessor(model_file=args.spm_model_path)
logging.info("Finished loading model")
tokenizer = AutoTokenizer.from_pretrained(
args.hf_model_name_or_path,
subfolder="tokenizer",
use_fast=False
)
class TokenizerStreamer(BaseStreamer):
def __init__(self, tokenizer):
self.tokenizer = tokenizer
self.num_invoked = 0
self.prompt = ""
self.generated_text = ""
self.ended = False
def put(self, t: torch.Tensor):
d = t.dim()
if d == 1:
pass
elif d == 2:
t = t[0]
else:
raise NotImplementedError
t = [int(x) for x in t.numpy()]
text = tokenizer.decode(t)
if text in [tokenizer.bos_token, tokenizer.eos_token]:
text = ""
if self.num_invoked == 0:
self.prompt = text
self.num_invoked += 1
return
self.generated_text += text
logging.debug(f"[streamer]: {self.generated_text}")
def end(self):
self.ended = True
INPUT_PROMPT = """ไปฅไธ‹ใฏใ€ใ‚ฟใ‚นใ‚ฏใ‚’่ชฌๆ˜Žใ™ใ‚‹ๆŒ‡็คบใจใ€ๆ–‡่„ˆใฎใ‚ใ‚‹ๅ…ฅๅŠ›ใฎ็ต„ใฟๅˆใ‚ใ›ใงใ™ใ€‚่ฆๆฑ‚ใ‚’้ฉๅˆ‡ใซๆบ€ใŸใ™ๅฟœ็ญ”ใ‚’ๆ›ธใใชใ•ใ„ใ€‚
### ๆŒ‡็คบ:
{instruction}
### ๅ…ฅๅŠ›:
{input}
### ๅฟœ็ญ”: """
NO_INPUT_PROMPT = """ไปฅไธ‹ใฏใ€ใ‚ฟใ‚นใ‚ฏใ‚’่ชฌๆ˜Žใ™ใ‚‹ๆŒ‡็คบใจใ€ๆ–‡่„ˆใฎใ‚ใ‚‹ๅ…ฅๅŠ›ใฎ็ต„ใฟๅˆใ‚ใ›ใงใ™ใ€‚่ฆๆฑ‚ใ‚’้ฉๅˆ‡ใซๆบ€ใŸใ™ๅฟœ็ญ”ใ‚’ๆ›ธใใชใ•ใ„ใ€‚
### ๆŒ‡็คบ:
{instruction}
### ๅฟœ็ญ”: """
def postprocess_output(output):
output = output\
.split('### ๅฟœ็ญ”:')[1]\
.split('###')[0]\
.split('##')[0]\
.lstrip(tokenizer.bos_token)\
.rstrip(tokenizer.eos_token)\
.replace("###", "")\
.strip()
return output
def generate(
prompt,
max_new_tokens,
temperature,
repetition_penalty,
do_sample,
no_repeat_ngram_size,
):
log = dict(locals())
logging.debug(log)
input_text = NO_INPUT_PROMPT.format(instruction=prompt)
input_ids = tokenizer.encode(input_text, add_special_tokens=False, return_tensors="pt")
streamer = TokenizerStreamer(tokenizer=tokenizer)
max_possilbe_new_tokens = model.config.max_position_embeddings - input_ids.shape[0]
max_possilbe_new_tokens = min(max_possilbe_new_tokens, max_new_tokens)
thr = threading.Thread(target=model.generate, args=(), kwargs=dict(
input_ids=input_ids.to(model.device),
do_sample=do_sample,
temperature=temperature,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
max_new_tokens=max_possilbe_new_tokens,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
bad_words_ids=[[tokenizer.unk_token_id]],
streamer=streamer,
))
thr.start()
while not streamer.ended:
time.sleep(0.05)
yield streamer.generated_text
# TODO: optimize for final few tokens
gen = streamer.generated_text
log.update(dict(
generation=gen,
version=VERSION,
time=str(arrow.now("+09:00"))))
logging.info(log)
yield gen
def process_feedback(
rating,
prompt,
generation,
max_new_tokens,
temperature,
repetition_penalty,
do_sample,
no_repeat_ngram_size,
):
log = dict(locals())
log.update(dict(
time=str(arrow.now("+09:00")),
version=VERSION,
))
logging.info(log)
if gr_interface:
gr_interface.close(verbose=False)
with gr.Blocks() as gr_interface:
with gr.Row():
gr.Markdown(f"# ๆ—ฅๆœฌ่ชž StableLM Tuned Pre-Alpha ({VERSION})")
# gr.Markdown(f"ใƒใƒผใ‚ธใƒงใƒณ๏ผš{VERSION}")
with gr.Row():
gr.Markdown("ใ“ใฎ่จ€่ชžใƒขใƒ‡ใƒซใฏ Stability AI Japan ใŒ้–‹็™บใ—ใŸๅˆๆœŸใƒใƒผใ‚ธใƒงใƒณใฎๆ—ฅๆœฌ่ชžใƒขใƒ‡ใƒซใงใ™ใ€‚ใƒขใƒ‡ใƒซใฏใ€Œใƒ—ใƒญใƒณใƒ—ใƒˆใ€ใซๅ…ฅๅŠ›ใ—ใŸ่žใใŸใ„ใ“ใจใซๅฏพใ—ใฆใ€ใใ‚Œใ‚‰ใ—ใ„ๅฟœ็ญ”ใ‚’ใ™ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚")
with gr.Row():
# left panel
with gr.Column(scale=1):
# generation params
with gr.Box():
gr.Markdown("ใƒ‘ใƒฉใƒกใƒผใ‚ฟ")
# hidden default params
do_sample = gr.Checkbox(True, label="Do Sample", info="ใ‚ตใƒณใƒ—ใƒชใƒณใ‚ฐ็”Ÿๆˆ", visible=True)
no_repeat_ngram_size = gr.Slider(0, 10, value=3, step=1, label="No Repeat Ngram Size", visible=False)
# visible params
max_new_tokens = gr.Slider(
128,
min(512, model.config.max_position_embeddings),
value=128,
step=128,
label="max tokens",
info="็”Ÿๆˆใ™ใ‚‹ใƒˆใƒผใ‚ฏใƒณใฎๆœ€ๅคงๆ•ฐใ‚’ๆŒ‡ๅฎšใ™ใ‚‹",
)
temperature = gr.Slider(
0, 1, value=0.1, step=0.05, label="temperature",
info="ไฝŽใ„ๅ€คใฏๅ‡บๅŠ›ใ‚’ใ‚ˆใ‚Š้›†ไธญใ•ใ›ใฆๆฑบๅฎš่ซ–็š„ใซใ™ใ‚‹")
repetition_penalty = gr.Slider(
1, 1.5, value=1.2, step=0.05, label="frequency penalty",
info="้ซ˜ใ„ๅ€คใฏAIใŒ็นฐใ‚Š่ฟ”ใ™ๅฏ่ƒฝๆ€งใ‚’ๆธ›ๅฐ‘ใ•ใ›ใ‚‹")
# grouping params for easier reference
gr_params = [
max_new_tokens,
temperature,
repetition_penalty,
do_sample,
no_repeat_ngram_size,
]
# right panel
with gr.Column(scale=2):
# user input block
with gr.Box():
textbox_prompt = gr.Textbox(
label="ใƒ—ใƒญใƒณใƒ—ใƒˆ",
placeholder="ๆ—ฅๆœฌใฎ้ฆ–้ƒฝใฏ๏ผŸ",
interactive=True,
lines=5,
value=""
)
with gr.Box():
with gr.Row():
btn_stop = gr.Button(value="ใ‚ญใƒฃใƒณใ‚ปใƒซ", variant="secondary")
btn_submit = gr.Button(value="ๅฎŸ่กŒ", variant="primary")
# model output block
with gr.Box():
textbox_generation = gr.Textbox(
label="็”Ÿๆˆ็ตๆžœ",
lines=5,
value=""
)
# rating block
with gr.Row():
gr.Markdown("ใ‚ˆใ‚Š่‰ฏใ„่จ€่ชžใƒขใƒ‡ใƒซใ‚’็š†ๆง˜ใซๆไพ›ใงใใ‚‹ใ‚ˆใ†ใ€็”Ÿๆˆๅ“่ณชใซใคใ„ใฆใฎใ”ๆ„่ฆ‹ใ‚’ใŠ่žใ‹ใ›ใใ ใ•ใ„ใ€‚")
with gr.Box():
with gr.Row():
rating_options = [
"ๆœ€ๆ‚ช",
"ไธๅˆๆ ผ",
"ไธญ็ซ‹",
"ๅˆๆ ผ",
"ๆœ€้ซ˜",
]
btn_ratings = [gr.Button(value=v) for v in rating_options]
# TODO: we might not need this for sharing with close groups
# with gr.Box():
# gr.Markdown("TODO๏ผšFor more feedback link for google form")
# event handling
inputs = [textbox_prompt] + gr_params
click_event = btn_submit.click(generate, inputs, textbox_generation, queue=True)
btn_stop.click(None, None, None, cancels=click_event, queue=False)
for btn_rating in btn_ratings:
btn_rating.click(process_feedback, [btn_rating, textbox_prompt, textbox_generation] + gr_params, queue=False)
gr_interface.queue(max_size=32, concurrency_count=2)
gr_interface.launch(server_port=args.port, share=args.make_public)