File size: 9,886 Bytes
c74831d
 
54ac395
 
af43a3d
54ac395
 
 
 
c74831d
54ac395
 
311e2d3
54ac395
 
 
 
 
 
 
 
 
 
0292d70
6420f07
54ac395
 
 
311e2d3
54ac395
 
 
 
 
 
 
433d9a2
54ac395
 
311e2d3
54ac395
311e2d3
54ac395
 
 
311e2d3
54ac395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311e2d3
 
 
 
 
 
 
 
 
54ac395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311e2d3
 
 
 
54ac395
 
 
 
 
 
 
433d9a2
54ac395
 
 
 
311e2d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af43a3d
 
 
54ac395
433d9a2
af43a3d
 
433d9a2
54ac395
af43a3d
 
311e2d3
 
 
 
 
 
 
54ac395
 
 
311e2d3
433d9a2
54ac395
433d9a2
 
54ac395
311e2d3
 
 
 
54ac395
 
311e2d3
54ac395
 
 
 
af43a3d
54ac395
 
af43a3d
6420f07
 
 
 
af43a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6420f07
 
 
 
af43a3d
54ac395
 
 
 
 
 
311e2d3
4762d68
433d9a2
311e2d3
54ac395
af43a3d
 
 
 
 
 
 
 
 
763a991
311e2d3
af43a3d
 
 
 
 
 
 
 
 
 
 
311e2d3
af43a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f5d2e9
311e2d3
af43a3d
 
 
 
 
 
b4ba75b
af43a3d
b4ba75b
af43a3d
 
 
 
9f5d2e9
af43a3d
 
 
9f5d2e9
 
 
 
 
af43a3d
 
 
9f5d2e9
 
927ae14
9f5d2e9
 
af43a3d
 
763a991
 
 
 
af43a3d
 
 
 
 
 
 
 
54ac395
af43a3d
433d9a2
54ac395
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import gradio as gr

import os
import threading
import arrow
import time
import argparse
import logging
from dataclasses import dataclass

import torch
import sentencepiece as spm
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import GPTNeoXForCausalLM, GPTNeoXConfig
from transformers.generation.streamers import BaseStreamer
from huggingface_hub import hf_hub_download, login


logger = logging.getLogger()
logger.setLevel("INFO")

gr_interface = None

VERSION = "0.1.0"

@dataclass
class DefaultArgs:
    hf_model_name_or_path: str = None
    hf_tokenizer_name_or_path: str = None
    spm_model_path: str = None
    env: str = "dev"
    port: int = 7860
    make_public: bool = False

if os.getenv("RUNNING_ON_HF_SPACE"):
    login(token=os.getenv("HF_TOKEN"))
    hf_repo = os.getenv("HF_MODEL_REPO")
    args = DefaultArgs()
    args.hf_model_name_or_path = hf_repo
    args.hf_tokenizer_name_or_path = os.path.join(hf_repo, "tokenizer")
    args.spm_model_path = hf_hub_download(repo_id=hf_repo, filename="sentencepiece.model")
    
else:
    parser = argparse.ArgumentParser(description="")
    parser.add_argument("--hf_model_name_or_path", type=str, required=True)
    parser.add_argument("--hf_tokenizer_name_or_path", type=str, required=False)
    parser.add_argument("--spm_model_path", type=str, required=True)   
    parser.add_argument("--env", type=str, default="dev")      
    parser.add_argument("--port", type=int, default=7860)      
    parser.add_argument("--make_public", action='store_true') 
    args = parser.parse_args()

def load_model(
    model_dir,
):
    config = GPTNeoXConfig.from_pretrained(model_dir)
    config.is_decoder = True
    model = GPTNeoXForCausalLM.from_pretrained(model_dir, config=config, torch_dtype=torch.bfloat16)
    if torch.cuda.is_available():
        model = model.to("cuda:0")
    return model

logging.info("Loading model")
model = load_model(args.hf_model_name_or_path)
sp = spm.SentencePieceProcessor(model_file=args.spm_model_path)
logging.info("Finished loading model")

tokenizer = AutoTokenizer.from_pretrained(
    args.hf_model_name_or_path, 
    subfolder="tokenizer",
    use_fast=False
)

class TokenizerStreamer(BaseStreamer):
    def __init__(self, tokenizer):
        self.tokenizer = tokenizer
        self.num_invoked = 0
        self.prompt = ""
        self.generated_text = ""
        self.ended = False

    
    def put(self, t: torch.Tensor):
        d = t.dim()
        if d == 1:
            pass
        elif d == 2:
            t = t[0]
        else:
            raise NotImplementedError
        
        t = [int(x) for x in t.numpy()]
        
        text = tokenizer.decode(t)
        if text in [tokenizer.bos_token, tokenizer.eos_token]:
            text = ""
        
        
        if self.num_invoked == 0:
            self.prompt = text
            self.num_invoked += 1
            return
        
        self.generated_text += text
        logging.debug(f"[streamer]: {self.generated_text}")
    
    def end(self):
        self.ended = True

INPUT_PROMPT = """ไปฅไธ‹ใฏใ€ใ‚ฟใ‚นใ‚ฏใ‚’่ชฌๆ˜Žใ™ใ‚‹ๆŒ‡็คบใจใ€ๆ–‡่„ˆใฎใ‚ใ‚‹ๅ…ฅๅŠ›ใฎ็ต„ใฟๅˆใ‚ใ›ใงใ™ใ€‚่ฆๆฑ‚ใ‚’้ฉๅˆ‡ใซๆบ€ใŸใ™ๅฟœ็ญ”ใ‚’ๆ›ธใใชใ•ใ„ใ€‚

### ๆŒ‡็คบ: 
{instruction}

### ๅ…ฅๅŠ›: 
{input}

### ๅฟœ็ญ”: """

NO_INPUT_PROMPT = """ไปฅไธ‹ใฏใ€ใ‚ฟใ‚นใ‚ฏใ‚’่ชฌๆ˜Žใ™ใ‚‹ๆŒ‡็คบใจใ€ๆ–‡่„ˆใฎใ‚ใ‚‹ๅ…ฅๅŠ›ใฎ็ต„ใฟๅˆใ‚ใ›ใงใ™ใ€‚่ฆๆฑ‚ใ‚’้ฉๅˆ‡ใซๆบ€ใŸใ™ๅฟœ็ญ”ใ‚’ๆ›ธใใชใ•ใ„ใ€‚

### ๆŒ‡็คบ: 
{instruction}

### ๅฟœ็ญ”: """


def postprocess_output(output):
    output = output\
        .split('### ๅฟœ็ญ”:')[1]\
        .split('###')[0]\
        .split('##')[0]\
        .lstrip(tokenizer.bos_token)\
        .rstrip(tokenizer.eos_token)\
        .replace("###", "")\
        .strip()
    return output

def generate(
    prompt,
    max_new_tokens,
    temperature,
    repetition_penalty,

    do_sample,
    no_repeat_ngram_size,
):
    log = dict(locals())
    logging.debug(log)

    input_text = NO_INPUT_PROMPT.format(instruction=prompt)
    input_ids = tokenizer.encode(input_text, add_special_tokens=False, return_tensors="pt")

    streamer = TokenizerStreamer(tokenizer=tokenizer)

    max_possilbe_new_tokens = model.config.max_position_embeddings - input_ids.shape[0]
    max_possilbe_new_tokens = min(max_possilbe_new_tokens, max_new_tokens)
    
    thr = threading.Thread(target=model.generate, args=(), kwargs=dict(
        input_ids=input_ids.to(model.device),
        do_sample=do_sample,
        temperature=temperature,
        repetition_penalty=repetition_penalty,
        no_repeat_ngram_size=no_repeat_ngram_size,
        max_new_tokens=max_possilbe_new_tokens,
        pad_token_id=tokenizer.pad_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id,
        bad_words_ids=[[tokenizer.unk_token_id]],
        streamer=streamer,
    ))

    thr.start()
    
    while not streamer.ended:
        time.sleep(0.05)
        yield streamer.generated_text
    
    # TODO: optimize for final few tokens
    gen = streamer.generated_text
    log.update(dict(
        generation=gen, 
        version=VERSION,
        time=str(arrow.now("+09:00"))))
    logging.info(log)
    yield gen

def process_feedback(
    rating,
    prompt,
    generation,
    
    max_new_tokens,
    temperature,
    repetition_penalty,
    do_sample,
    no_repeat_ngram_size,
):
    log = dict(locals())
    log.update(dict(
        time=str(arrow.now("+09:00")),
        version=VERSION,
    ))
    logging.info(log)

if gr_interface:
    gr_interface.close(verbose=False)

with gr.Blocks() as gr_interface:
    with gr.Row():
        gr.Markdown(f"# ๆ—ฅๆœฌ่ชž StableLM Tuned Pre-Alpha ({VERSION})")
        # gr.Markdown(f"ใƒใƒผใ‚ธใƒงใƒณ๏ผš{VERSION}")
    with gr.Row():
        gr.Markdown("ใ“ใฎ่จ€่ชžใƒขใƒ‡ใƒซใฏ Stability AI Japan ใŒ้–‹็™บใ—ใŸๅˆๆœŸใƒใƒผใ‚ธใƒงใƒณใฎๆ—ฅๆœฌ่ชžใƒขใƒ‡ใƒซใงใ™ใ€‚ใƒขใƒ‡ใƒซใฏใ€Œใƒ—ใƒญใƒณใƒ—ใƒˆใ€ใซๅ…ฅๅŠ›ใ—ใŸ่žใใŸใ„ใ“ใจใซๅฏพใ—ใฆใ€ใใ‚Œใ‚‰ใ—ใ„ๅฟœ็ญ”ใ‚’ใ™ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚")
    with gr.Row():
        
        # left panel
        with gr.Column(scale=1):
            
            # generation params
            with gr.Box():
                gr.Markdown("ใƒ‘ใƒฉใƒกใƒผใ‚ฟ")
                
                # hidden default params
                do_sample = gr.Checkbox(True, label="Do Sample", info="ใ‚ตใƒณใƒ—ใƒชใƒณใ‚ฐ็”Ÿๆˆ", visible=True)
                no_repeat_ngram_size = gr.Slider(0, 10, value=3, step=1, label="No Repeat Ngram Size", visible=False)
                
                # visible params
                max_new_tokens = gr.Slider(
                    128, 
                    min(512, model.config.max_position_embeddings), 
                    value=128, 
                    step=128, 
                    label="max tokens",
                    info="็”Ÿๆˆใ™ใ‚‹ใƒˆใƒผใ‚ฏใƒณใฎๆœ€ๅคงๆ•ฐใ‚’ๆŒ‡ๅฎšใ™ใ‚‹",
                )
                temperature = gr.Slider(
                    0, 1, value=0.1, step=0.05, label="temperature", 
                    info="ไฝŽใ„ๅ€คใฏๅ‡บๅŠ›ใ‚’ใ‚ˆใ‚Š้›†ไธญใ•ใ›ใฆๆฑบๅฎš่ซ–็š„ใซใ™ใ‚‹")
                repetition_penalty = gr.Slider(
                    1, 1.5, value=1.2, step=0.05, label="frequency penalty",
                    info="้ซ˜ใ„ๅ€คใฏAIใŒ็นฐใ‚Š่ฟ”ใ™ๅฏ่ƒฝๆ€งใ‚’ๆธ›ๅฐ‘ใ•ใ›ใ‚‹")
                
                # grouping params for easier reference
                gr_params = [
                    max_new_tokens,
                    temperature,
                    repetition_penalty,
                    
                    do_sample,
                    no_repeat_ngram_size,
                ]
                
        # right panel
        with gr.Column(scale=2):
            # user input block
            with gr.Box():
                textbox_prompt = gr.Textbox(
                    label="ใƒ—ใƒญใƒณใƒ—ใƒˆ",
                    placeholder="ๆ—ฅๆœฌใฎ้ฆ–้ƒฝใฏ๏ผŸ",
                    interactive=True,
                    lines=5,
                    value=""
                )
            with gr.Box():
                with gr.Row():
                    btn_stop = gr.Button(value="ใ‚ญใƒฃใƒณใ‚ปใƒซ", variant="secondary")
                    btn_submit = gr.Button(value="ๅฎŸ่กŒ", variant="primary")
                    

            # model output block
            with gr.Box():
                textbox_generation = gr.Textbox(
                    label="็”Ÿๆˆ็ตๆžœ",
                    lines=5,
                    value=""
                )
            
            # rating block
            with gr.Row():
                gr.Markdown("ใ‚ˆใ‚Š่‰ฏใ„่จ€่ชžใƒขใƒ‡ใƒซใ‚’็š†ๆง˜ใซๆไพ›ใงใใ‚‹ใ‚ˆใ†ใ€็”Ÿๆˆๅ“่ณชใซใคใ„ใฆใฎใ”ๆ„่ฆ‹ใ‚’ใŠ่žใ‹ใ›ใใ ใ•ใ„ใ€‚")
            
            with gr.Box():
                with gr.Row():
                    rating_options = [
                        "ๆœ€ๆ‚ช",
                        "ไธๅˆๆ ผ",
                        "ไธญ็ซ‹",
                        "ๅˆๆ ผ",
                        "ๆœ€้ซ˜",
                    ]
                    btn_ratings = [gr.Button(value=v) for v in rating_options]
            
            # TODO: we might not need this for sharing with close groups
            # with gr.Box():
            #     gr.Markdown("TODO๏ผšFor more feedback link for google form")

    # event handling 
    inputs = [textbox_prompt] + gr_params
    click_event = btn_submit.click(generate, inputs, textbox_generation, queue=True)
    btn_stop.click(None, None, None, cancels=click_event, queue=False)
    
    for btn_rating in btn_ratings:
        btn_rating.click(process_feedback, [btn_rating, textbox_prompt, textbox_generation] + gr_params, queue=False)

    
gr_interface.queue(max_size=32, concurrency_count=2)
gr_interface.launch(server_port=args.port, share=args.make_public)