File size: 5,000 Bytes
2c50deb
1f28384
2c50deb
 
 
 
 
 
1f28384
3ed5219
1f28384
2c50deb
 
 
 
3ed5219
 
 
 
2c50deb
 
3ed5219
 
2c50deb
 
 
 
 
 
 
 
3ed5219
 
 
 
 
 
de52eea
c46b2fc
3ed5219
 
 
 
 
 
 
 
 
1f28384
 
cd34820
1f28384
 
2c50deb
 
 
 
 
 
 
 
 
 
3ed5219
1f28384
2c50deb
 
 
 
 
3ed5219
2c50deb
 
 
 
 
 
 
 
 
 
 
 
b10bb04
 
 
 
 
 
 
 
 
 
 
 
 
3ed5219
 
1f28384
 
 
2c50deb
 
 
 
 
 
 
 
 
 
 
 
 
c46b2fc
1f28384
2c50deb
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import time
import torch
import numpy as np

import gradio as gr

from segment_anything import build_sam, SamAutomaticMaskGenerator
from segment_anything.utils.amg import (
    build_all_layer_point_grids
)

os.system(r'python -m wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth')

hourglass_args = {
    "baseline": {
        "use_hourglass": False,
        "hourglass_clustering_location": -1,
    },
    "1.2x faster": {
        "use_hourglass": True,
        "hourglass_clustering_location": 16,
        "hourglass_num_cluster": 81,
    },
    "1.5x faster": {
        "use_hourglass": True,
        "hourglass_clustering_location": 6,
        "hourglass_num_cluster": 81,
    },
}

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
mask_generator = SamAutomaticMaskGenerator(
    build_sam(checkpoint="sam_vit_h_4b8939.pth", use_hourglass=True),
)
mask_generator.predictor.model.to(device=device)

def predict(image, speed_mode, points_per_side):
    points_per_side = int(points_per_side)
    mask_generator.predictor.model.image_encoder.load_hourglass_args(**hourglass_args[speed_mode])
    if points_per_side is not None:
        mask_generator.point_grids = build_all_layer_point_grids(
            points_per_side,
            mask_generator.crop_n_layers,
            mask_generator.crop_n_points_downscale_factor,
        )
    mask_generator.points_per_batch = 64 if points_per_side > 12 else points_per_side * points_per_side

    start = time.perf_counter()
    with torch.no_grad():
        masks = mask_generator.generate(image)
    eta = time.perf_counter() - start
    eta_text = f"Time of generation: {eta:.2f} seconds"

    if len(masks) == 0:
        return image
    sorted_masks = sorted(masks, key=(lambda x: x['area']), reverse=True)
    img = np.ones(image.shape)
    for mask in sorted_masks:
        m = mask['segmentation']
        color_mask = np.random.random((1, 1, 3))
        img = img * (1 - m[..., None]) + color_mask * m[..., None]

    image = (image * 0.65 + img * 255 * 0.35).astype(np.uint8)
    return image, eta_text

description = """
#  <center>Expedit-SAM (Expedite Segment Anything Model without any training)</center>
Github link: [Link](https://github.com/Expedit-LargeScale-Vision-Transformer/Expedit-SAM)
You can select the speed mode you want to use from the "Speed Mode" dropdown menu and click "Run" to segment the image you uploaded to the "Input Image" box.
Points per side is a hyper-parameter that controls the number of points used to generate the segmentation masks. The higher the number, the more accurate the segmentation masks will be, but the slower the inference speed will be. The default value is 12.
"""
if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
    description += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'


def main():
    with gr.Blocks() as demo:
        gr.Markdown(description)
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    input_image = gr.Image(label="Input Image")
                    with gr.Row():
                        points_per_side = gr.Dropdown(
                            choices=[4, 6, 8, 12, 16, 32],
                            value=12, 
                            label="Points per Side",
                        )
                        speed_mode = gr.Dropdown(
                            choices=list(hourglass_args.keys()),
                            value="baseline", 
                            label="Speed Mode",
                            multiselect=False,
                        )
                    with gr.Row():
                        run_btn = gr.Button(label="Run", value="Run")
                        clear_btn = gr.Button(label="Clear",  value="Clear")
                with gr.Column():
                    output_image = gr.Image(label="Output Image")
                    eta_label = gr.Label(label="ETA")
            gr.Examples(
                examples=[
                    ["./notebooks/images/dog.jpg"],
                    ["notebooks/images/groceries.jpg"],
                    ["notebooks/images/truck.jpg"],
                ],
                inputs=[input_image],
                outputs=[output_image],
                fn=predict,
            )
        
        run_btn.click(
            fn=predict, 
            inputs=[input_image, speed_mode, points_per_side], 
            outputs=[output_image, eta_label]
        )
        clear_btn.click(
            fn=lambda: [None, None], 
            inputs=None, 
            outputs=[input_image, output_image], 
            queue=False,
        )

    demo.queue()
    demo.launch()

if __name__ == "__main__":
    main()