kxqt commited on
Commit
cd34820
1 Parent(s): 492da6e

update layout & use original method

Browse files
Files changed (1) hide show
  1. app.py +2 -56
app.py CHANGED
@@ -30,59 +30,6 @@ hourglass_args = {
30
  },
31
  }
32
 
33
- def generate_mask(image, generator: SamAutomaticMaskGenerator):
34
- generator.predictor.set_image(image)
35
-
36
- image_size = image.shape[:2]
37
- points_scale = np.array(image_size)[None, ::-1]
38
- points_for_image = generator.point_grids[0] * points_scale
39
- for (points,) in batch_iterator(generator.points_per_batch, points_for_image):
40
- transformed_points = generator.predictor.transform.apply_coords(points, image_size)
41
- in_points = torch.as_tensor(transformed_points, device=generator.predictor.device)
42
- in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
43
- masks, iou_preds, _ = generator.predictor.predict_torch(
44
- in_points[:, None, :],
45
- in_labels[:, None],
46
- multimask_output=True,
47
- return_logits=True,
48
- )
49
-
50
- # Serialize predictions and store in MaskData
51
- data = MaskData(
52
- masks=masks.flatten(0, 1),
53
- iou_preds=iou_preds.flatten(0, 1),
54
- points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),
55
- )
56
- del masks
57
-
58
- # Filter by predicted IoU
59
- if generator.pred_iou_thresh > 0.0:
60
- keep_mask = data["iou_preds"] > generator.pred_iou_thresh
61
- data.filter(keep_mask)
62
-
63
- # Calculate stability score
64
- data["stability_score"] = calculate_stability_score(
65
- data["masks"], generator.predictor.model.mask_threshold, generator.stability_score_offset
66
- )
67
- if generator.stability_score_thresh > 0.0:
68
- keep_mask = data["stability_score"] >= generator.stability_score_thresh
69
- data.filter(keep_mask)
70
-
71
- # Threshold masks and calculate boxes
72
- data["masks"] = data["masks"] > generator.predictor.model.mask_threshold
73
-
74
- # Write mask records
75
- curr_anns = []
76
- for idx in range(len(data["masks"])):
77
- ann = {
78
- "segmentation": data["masks"][idx].numpy(),
79
- "area": data["masks"][idx].sum().item(),
80
- }
81
- curr_anns.append(ann)
82
-
83
- return curr_anns
84
-
85
-
86
  def predict(image, speed_mode, points_per_side):
87
  points_per_side = int(points_per_side)
88
  mask_generator = SamAutomaticMaskGenerator(
@@ -92,8 +39,7 @@ def predict(image, speed_mode, points_per_side):
92
  )
93
  start = time.perf_counter()
94
  with torch.no_grad():
95
- # masks = mask_generator.generate(image)
96
- masks = generate_mask(image, mask_generator)
97
  eta = time.perf_counter() - start
98
  eta_text = f"Time of generation: {eta:.2f} seconds"
99
 
@@ -136,7 +82,7 @@ def main():
136
  label="Speed Mode",
137
  multiselect=False,
138
  )
139
- with gr.Row():
140
  run_btn = gr.Button(label="Run", id="run", value="Run")
141
  clear_btn = gr.Button(label="Clear", id="clear", value="Clear")
142
  with gr.Column():
 
30
  },
31
  }
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  def predict(image, speed_mode, points_per_side):
34
  points_per_side = int(points_per_side)
35
  mask_generator = SamAutomaticMaskGenerator(
 
39
  )
40
  start = time.perf_counter()
41
  with torch.no_grad():
42
+ masks = mask_generator.generate(image)
 
43
  eta = time.perf_counter() - start
44
  eta_text = f"Time of generation: {eta:.2f} seconds"
45
 
 
82
  label="Speed Mode",
83
  multiselect=False,
84
  )
85
+ with gr.Column():
86
  run_btn = gr.Button(label="Run", id="run", value="Run")
87
  clear_btn = gr.Button(label="Clear", id="clear", value="Clear")
88
  with gr.Column():