Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# Main class for the implementation of the global alignment | |
# -------------------------------------------------------- | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from dust3r.cloud_opt.base_opt import BasePCOptimizer | |
from dust3r.utils.geometry import xy_grid, geotrf | |
from dust3r.utils.device import to_cpu, to_numpy | |
class PointCloudOptimizer(BasePCOptimizer): | |
""" Optimize a global scene, given a list of pairwise observations. | |
Graph node: images | |
Graph edges: observations = (pred1, pred2) | |
""" | |
def __init__(self, *args, optimize_pp=False, focal_break=20, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.has_im_poses = True # by definition of this class | |
self.focal_break = focal_break | |
# adding thing to optimize | |
self.im_depthmaps = nn.ParameterList(torch.randn(H, W)/10-3 for H, W in self.imshapes) # log(depth) | |
self.im_poses = nn.ParameterList(self.rand_pose(self.POSE_DIM) for _ in range(self.n_imgs)) # camera poses | |
if self.same_focals: | |
self.im_focals = nn.Parameter(torch.FloatTensor([[torch.tensor(self.focal_break)*np.log(max(self.imshapes[0]))]])) # initialize with H x W of first image | |
else: | |
self.im_focals = nn.ParameterList(torch.FloatTensor( | |
[self.focal_break*np.log(max(H, W))]) for H, W in self.imshapes) # camera intrinsics | |
self.im_pp = nn.ParameterList(torch.zeros((2,)) for _ in range(self.n_imgs)) # camera intrinsics | |
self.im_pp.requires_grad_(optimize_pp) | |
self.imshape = self.imshapes[0] | |
im_areas = [h*w for h, w in self.imshapes] | |
self.max_area = max(im_areas) | |
# adding thing to optimize | |
self.im_depthmaps = ParameterStack(self.im_depthmaps, is_param=True, fill=self.max_area) | |
self.im_poses = ParameterStack(self.im_poses, is_param=True) | |
self.im_focals = ParameterStack(self.im_focals, is_param=True) | |
self.im_pp = ParameterStack(self.im_pp, is_param=True) | |
self.register_buffer('_pp', torch.tensor([(w/2, h/2) for h, w in self.imshapes])) | |
self.register_buffer('_grid', ParameterStack( | |
[xy_grid(W, H, device=self.device) for H, W in self.imshapes], fill=self.max_area)) | |
# pre-compute pixel weights | |
self.register_buffer('_weight_i', ParameterStack( | |
[self.conf_trf(self.conf_i[i_j]) for i_j in self.str_edges], fill=self.max_area)) | |
self.register_buffer('_weight_j', ParameterStack( | |
[self.conf_trf(self.conf_j[i_j]) for i_j in self.str_edges], fill=self.max_area)) | |
# precompute aa | |
self.register_buffer('_stacked_pred_i', ParameterStack(self.pred_i, self.str_edges, fill=self.max_area)) | |
self.register_buffer('_stacked_pred_j', ParameterStack(self.pred_j, self.str_edges, fill=self.max_area)) | |
self.register_buffer('_ei', torch.tensor([i for i, j in self.edges])) | |
self.register_buffer('_ej', torch.tensor([j for i, j in self.edges])) | |
self.total_area_i = sum([im_areas[i] for i, j in self.edges]) | |
self.total_area_j = sum([im_areas[j] for i, j in self.edges]) | |
def _check_all_imgs_are_selected(self, msk): | |
assert np.all(self._get_msk_indices(msk) == np.arange(self.n_imgs)), 'incomplete mask!' | |
def preset_pose(self, known_poses, pose_msk=None): # cam-to-world | |
self._check_all_imgs_are_selected(pose_msk) | |
if isinstance(known_poses, torch.Tensor) and known_poses.ndim == 2: | |
known_poses = [known_poses] | |
for idx, pose in zip(self._get_msk_indices(pose_msk), known_poses): | |
if self.verbose: | |
print(f' (setting pose #{idx} = {pose[:3,3]})') | |
self._no_grad(self._set_pose(self.im_poses, idx, torch.tensor(pose))) | |
# normalize scale if there's less than 1 known pose | |
n_known_poses = sum((p.requires_grad is False) for p in self.im_poses) | |
self.norm_pw_scale = (n_known_poses <= 1) | |
self.im_poses.requires_grad_(False) | |
self.norm_pw_scale = False | |
def preset_focal(self, known_focals, msk=None): | |
self._check_all_imgs_are_selected(msk) | |
for idx, focal in zip(self._get_msk_indices(msk), known_focals): | |
if self.verbose: | |
print(f' (setting focal #{idx} = {focal})') | |
self._no_grad(self._set_focal(idx, focal)) | |
self.im_focals.requires_grad_(False) | |
def preset_principal_point(self, known_pp, msk=None): | |
self._check_all_imgs_are_selected(msk) | |
for idx, pp in zip(self._get_msk_indices(msk), known_pp): | |
if self.verbose: | |
print(f' (setting principal point #{idx} = {pp})') | |
self._no_grad(self._set_principal_point(idx, pp)) | |
self.im_pp.requires_grad_(False) | |
def _get_msk_indices(self, msk): | |
if msk is None: | |
return range(self.n_imgs) | |
elif isinstance(msk, int): | |
return [msk] | |
elif isinstance(msk, (tuple, list)): | |
return self._get_msk_indices(np.array(msk)) | |
elif msk.dtype in (bool, torch.bool, np.bool_): | |
assert len(msk) == self.n_imgs | |
return np.where(msk)[0] | |
elif np.issubdtype(msk.dtype, np.integer): | |
return msk | |
else: | |
raise ValueError(f'bad {msk=}') | |
def _no_grad(self, tensor): | |
assert tensor.requires_grad, 'it must be True at this point, otherwise no modification occurs' | |
def _set_focal(self, idx, focal, force=False): | |
param = self.im_focals[idx] | |
if param.requires_grad or force: # can only init a parameter not already initialized | |
param.data[:] = self.focal_break * np.log(focal) | |
return param | |
def get_focals(self): | |
log_focals = torch.stack(list(self.im_focals), dim=0) | |
return (log_focals / self.focal_break).exp() | |
def get_known_focal_mask(self): | |
return torch.tensor([not (p.requires_grad) for p in self.im_focals]) | |
def _set_principal_point(self, idx, pp, force=False): | |
param = self.im_pp[idx] | |
H, W = self.imshapes[idx] | |
if param.requires_grad or force: # can only init a parameter not already initialized | |
param.data[:] = to_cpu(to_numpy(pp) - (W/2, H/2)) / 10 | |
return param | |
def get_principal_points(self): | |
return self._pp + 10 * self.im_pp | |
def get_intrinsics(self): | |
K = torch.zeros((self.n_imgs, 3, 3), device=self.device) | |
focals = self.get_focals().flatten() | |
K[:, 0, 0] = K[:, 1, 1] = focals | |
K[:, :2, 2] = self.get_principal_points() | |
K[:, 2, 2] = 1 | |
return K | |
def get_im_poses(self): # cam to world | |
cam2world = self._get_poses(self.im_poses) | |
return cam2world | |
def _set_depthmap(self, idx, depth, force=False): | |
depth = _ravel_hw(depth, self.max_area) | |
param = self.im_depthmaps[idx] | |
if param.requires_grad or force: # can only init a parameter not already initialized | |
param.data[:] = depth.log().nan_to_num(neginf=0) | |
return param | |
def get_depthmaps(self, raw=False): | |
res = self.im_depthmaps.exp() | |
if not raw: | |
res = [dm[:h*w].view(h, w) for dm, (h, w) in zip(res, self.imshapes)] | |
return res | |
def depth_to_pts3d(self): | |
# Get depths and projection params if not provided | |
focals = self.get_focals() | |
pp = self.get_principal_points() | |
im_poses = self.get_im_poses() | |
depth = self.get_depthmaps(raw=True) | |
# get pointmaps in camera frame | |
rel_ptmaps = _fast_depthmap_to_pts3d(depth, self._grid, focals, pp=pp, same_focals=self.same_focals) | |
# project to world frame | |
return geotrf(im_poses, rel_ptmaps) | |
def get_pts3d(self, raw=False): | |
res = self.depth_to_pts3d() | |
if not raw: | |
res = [dm[:h*w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)] | |
return res | |
def forward(self): | |
pw_poses = self.get_pw_poses() # cam-to-world | |
pw_adapt = self.get_adaptors().unsqueeze(1) | |
proj_pts3d = self.get_pts3d(raw=True) | |
# rotate pairwise prediction according to pw_poses | |
aligned_pred_i = geotrf(pw_poses, pw_adapt * self._stacked_pred_i) | |
aligned_pred_j = geotrf(pw_poses, pw_adapt * self._stacked_pred_j) | |
# compute the less | |
li = self.dist(proj_pts3d[self._ei], aligned_pred_i, weight=self._weight_i).sum() / self.total_area_i | |
lj = self.dist(proj_pts3d[self._ej], aligned_pred_j, weight=self._weight_j).sum() / self.total_area_j | |
return li + lj | |
def _fast_depthmap_to_pts3d(depth, pixel_grid, focal, pp, same_focals=False): | |
pp = pp.unsqueeze(1) | |
focal = focal.unsqueeze(1) | |
if not same_focals: | |
assert focal.shape == (len(depth), 1, 1) | |
assert pp.shape == (len(depth), 1, 2) | |
assert pixel_grid.shape == depth.shape + (2,) | |
depth = depth.unsqueeze(-1) | |
return torch.cat((depth * (pixel_grid - pp) / focal, depth), dim=-1) | |
def ParameterStack(params, keys=None, is_param=None, fill=0): | |
if keys is not None: | |
params = [params[k] for k in keys] | |
if fill > 0: | |
params = [_ravel_hw(p, fill) for p in params] | |
requires_grad = params[0].requires_grad | |
assert all(p.requires_grad == requires_grad for p in params) | |
params = torch.stack(list(params)).float().detach() | |
if is_param or requires_grad: | |
params = nn.Parameter(params) | |
params.requires_grad_(requires_grad) | |
return params | |
def _ravel_hw(tensor, fill=0): | |
# ravel H,W | |
tensor = tensor.view((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:]) | |
if len(tensor) < fill: | |
tensor = torch.cat((tensor, tensor.new_zeros((fill - len(tensor),)+tensor.shape[1:]))) | |
return tensor | |
def acceptable_focal_range(H, W, minf=0.5, maxf=3.5): | |
focal_base = max(H, W) / (2 * np.tan(np.deg2rad(60) / 2)) # size / 1.1547005383792515 | |
return minf*focal_base, maxf*focal_base | |
def apply_mask(img, msk): | |
img = img.copy() | |
img[msk] = 0 | |
return img | |