File size: 10,237 Bytes
5f093a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Main class for the implementation of the global alignment
# --------------------------------------------------------
import numpy as np
import torch
import torch.nn as nn

from dust3r.cloud_opt.base_opt import BasePCOptimizer
from dust3r.utils.geometry import xy_grid, geotrf
from dust3r.utils.device import to_cpu, to_numpy


class PointCloudOptimizer(BasePCOptimizer):
    """ Optimize a global scene, given a list of pairwise observations.
    Graph node: images
    Graph edges: observations = (pred1, pred2)
    """

    def __init__(self, *args, optimize_pp=False, focal_break=20, **kwargs):
        super().__init__(*args, **kwargs)

        self.has_im_poses = True  # by definition of this class
        self.focal_break = focal_break

        # adding thing to optimize
        self.im_depthmaps = nn.ParameterList(torch.randn(H, W)/10-3 for H, W in self.imshapes)  # log(depth)
        self.im_poses = nn.ParameterList(self.rand_pose(self.POSE_DIM) for _ in range(self.n_imgs))  # camera poses
        if self.same_focals:
            self.im_focals = nn.Parameter(torch.FloatTensor([[torch.tensor(self.focal_break)*np.log(max(self.imshapes[0]))]])) # initialize with H x W of first image
        else:
            self.im_focals = nn.ParameterList(torch.FloatTensor(
                [self.focal_break*np.log(max(H, W))]) for H, W in self.imshapes)  # camera intrinsics
        self.im_pp = nn.ParameterList(torch.zeros((2,)) for _ in range(self.n_imgs))  # camera intrinsics
        self.im_pp.requires_grad_(optimize_pp)

        self.imshape = self.imshapes[0]
        im_areas = [h*w for h, w in self.imshapes]
        self.max_area = max(im_areas)

        # adding thing to optimize
        self.im_depthmaps = ParameterStack(self.im_depthmaps, is_param=True, fill=self.max_area)
        self.im_poses = ParameterStack(self.im_poses, is_param=True)
        self.im_focals = ParameterStack(self.im_focals, is_param=True)
        self.im_pp = ParameterStack(self.im_pp, is_param=True)
        self.register_buffer('_pp', torch.tensor([(w/2, h/2) for h, w in self.imshapes]))
        self.register_buffer('_grid', ParameterStack(
            [xy_grid(W, H, device=self.device) for H, W in self.imshapes], fill=self.max_area))

        # pre-compute pixel weights
        self.register_buffer('_weight_i', ParameterStack(
            [self.conf_trf(self.conf_i[i_j]) for i_j in self.str_edges], fill=self.max_area))
        self.register_buffer('_weight_j', ParameterStack(
            [self.conf_trf(self.conf_j[i_j]) for i_j in self.str_edges], fill=self.max_area))

        # precompute aa
        self.register_buffer('_stacked_pred_i', ParameterStack(self.pred_i, self.str_edges, fill=self.max_area))
        self.register_buffer('_stacked_pred_j', ParameterStack(self.pred_j, self.str_edges, fill=self.max_area))
        self.register_buffer('_ei', torch.tensor([i for i, j in self.edges]))
        self.register_buffer('_ej', torch.tensor([j for i, j in self.edges]))
        self.total_area_i = sum([im_areas[i] for i, j in self.edges])
        self.total_area_j = sum([im_areas[j] for i, j in self.edges])

    def _check_all_imgs_are_selected(self, msk):
        assert np.all(self._get_msk_indices(msk) == np.arange(self.n_imgs)), 'incomplete mask!'

    def preset_pose(self, known_poses, pose_msk=None):  # cam-to-world
        self._check_all_imgs_are_selected(pose_msk)

        if isinstance(known_poses, torch.Tensor) and known_poses.ndim == 2:
            known_poses = [known_poses]
        for idx, pose in zip(self._get_msk_indices(pose_msk), known_poses):
            if self.verbose:
                print(f' (setting pose #{idx} = {pose[:3,3]})')
            self._no_grad(self._set_pose(self.im_poses, idx, torch.tensor(pose)))

        # normalize scale if there's less than 1 known pose
        n_known_poses = sum((p.requires_grad is False) for p in self.im_poses)
        self.norm_pw_scale = (n_known_poses <= 1)

        self.im_poses.requires_grad_(False)
        self.norm_pw_scale = False

    def preset_focal(self, known_focals, msk=None):
        self._check_all_imgs_are_selected(msk)

        for idx, focal in zip(self._get_msk_indices(msk), known_focals):
            if self.verbose:
                print(f' (setting focal #{idx} = {focal})')
            self._no_grad(self._set_focal(idx, focal))

        self.im_focals.requires_grad_(False)

    def preset_principal_point(self, known_pp, msk=None):
        self._check_all_imgs_are_selected(msk)

        for idx, pp in zip(self._get_msk_indices(msk), known_pp):
            if self.verbose:
                print(f' (setting principal point #{idx} = {pp})')
            self._no_grad(self._set_principal_point(idx, pp))

        self.im_pp.requires_grad_(False)

    def _get_msk_indices(self, msk):
        if msk is None:
            return range(self.n_imgs)
        elif isinstance(msk, int):
            return [msk]
        elif isinstance(msk, (tuple, list)):
            return self._get_msk_indices(np.array(msk))
        elif msk.dtype in (bool, torch.bool, np.bool_):
            assert len(msk) == self.n_imgs
            return np.where(msk)[0]
        elif np.issubdtype(msk.dtype, np.integer):
            return msk
        else:
            raise ValueError(f'bad {msk=}')

    def _no_grad(self, tensor):
        assert tensor.requires_grad, 'it must be True at this point, otherwise no modification occurs'

    def _set_focal(self, idx, focal, force=False):
        param = self.im_focals[idx]
        if param.requires_grad or force:  # can only init a parameter not already initialized
            param.data[:] = self.focal_break * np.log(focal)
        return param

    def get_focals(self):
        log_focals = torch.stack(list(self.im_focals), dim=0)
        return (log_focals / self.focal_break).exp()

    def get_known_focal_mask(self):
        return torch.tensor([not (p.requires_grad) for p in self.im_focals])

    def _set_principal_point(self, idx, pp, force=False):
        param = self.im_pp[idx]
        H, W = self.imshapes[idx]
        if param.requires_grad or force:  # can only init a parameter not already initialized
            param.data[:] = to_cpu(to_numpy(pp) - (W/2, H/2)) / 10
        return param

    def get_principal_points(self):
        return self._pp + 10 * self.im_pp

    def get_intrinsics(self):
        K = torch.zeros((self.n_imgs, 3, 3), device=self.device)
        focals = self.get_focals().flatten()
        K[:, 0, 0] = K[:, 1, 1] = focals
        K[:, :2, 2] = self.get_principal_points()
        K[:, 2, 2] = 1
        return K

    def get_im_poses(self):  # cam to world
        cam2world = self._get_poses(self.im_poses)
        return cam2world

    def _set_depthmap(self, idx, depth, force=False):
        depth = _ravel_hw(depth, self.max_area)

        param = self.im_depthmaps[idx]
        if param.requires_grad or force:  # can only init a parameter not already initialized
            param.data[:] = depth.log().nan_to_num(neginf=0)
        return param

    def get_depthmaps(self, raw=False):
        res = self.im_depthmaps.exp()
        if not raw:
            res = [dm[:h*w].view(h, w) for dm, (h, w) in zip(res, self.imshapes)]
        return res

    def depth_to_pts3d(self):
        # Get depths and  projection params if not provided
        focals = self.get_focals()
        pp = self.get_principal_points()
        im_poses = self.get_im_poses()
        depth = self.get_depthmaps(raw=True)

        # get pointmaps in camera frame
        rel_ptmaps = _fast_depthmap_to_pts3d(depth, self._grid, focals, pp=pp, same_focals=self.same_focals)
        # project to world frame
        return geotrf(im_poses, rel_ptmaps)

    def get_pts3d(self, raw=False):
        res = self.depth_to_pts3d()
        if not raw:
            res = [dm[:h*w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)]
        return res

    def forward(self):
        pw_poses = self.get_pw_poses()  # cam-to-world
        pw_adapt = self.get_adaptors().unsqueeze(1)
        proj_pts3d = self.get_pts3d(raw=True)

        # rotate pairwise prediction according to pw_poses
        aligned_pred_i = geotrf(pw_poses, pw_adapt * self._stacked_pred_i)
        aligned_pred_j = geotrf(pw_poses, pw_adapt * self._stacked_pred_j)

        # compute the less
        li = self.dist(proj_pts3d[self._ei], aligned_pred_i, weight=self._weight_i).sum() / self.total_area_i
        lj = self.dist(proj_pts3d[self._ej], aligned_pred_j, weight=self._weight_j).sum() / self.total_area_j

        return li + lj


def _fast_depthmap_to_pts3d(depth, pixel_grid, focal, pp, same_focals=False):
    pp = pp.unsqueeze(1)
    focal = focal.unsqueeze(1)
    if not same_focals:
        assert focal.shape == (len(depth), 1, 1)
    assert pp.shape == (len(depth), 1, 2)
    assert pixel_grid.shape == depth.shape + (2,)
    depth = depth.unsqueeze(-1)
    return torch.cat((depth * (pixel_grid - pp) / focal, depth), dim=-1)


def ParameterStack(params, keys=None, is_param=None, fill=0):
    if keys is not None:
        params = [params[k] for k in keys]

    if fill > 0:
        params = [_ravel_hw(p, fill) for p in params]

    requires_grad = params[0].requires_grad
    assert all(p.requires_grad == requires_grad for p in params)

    params = torch.stack(list(params)).float().detach()
    if is_param or requires_grad:
        params = nn.Parameter(params)
        params.requires_grad_(requires_grad)
    return params


def _ravel_hw(tensor, fill=0):
    # ravel H,W
    tensor = tensor.view((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:])

    if len(tensor) < fill:
        tensor = torch.cat((tensor, tensor.new_zeros((fill - len(tensor),)+tensor.shape[1:])))
    return tensor


def acceptable_focal_range(H, W, minf=0.5, maxf=3.5):
    focal_base = max(H, W) / (2 * np.tan(np.deg2rad(60) / 2))  # size / 1.1547005383792515
    return minf*focal_base, maxf*focal_base


def apply_mask(img, msk):
    img = img.copy()
    img[msk] = 0
    return img