File size: 3,696 Bytes
c962a1e
 
26065ca
391bf1a
35cff45
6cd713c
0f5d4d0
391bf1a
 
 
 
 
c962a1e
1f8a9e2
da4f293
 
0c021ae
7f93b4d
c962a1e
26065ca
 
 
 
 
 
 
 
61d0002
c962a1e
391bf1a
 
da4f293
12b8205
da4f293
391bf1a
4dcbad1
 
0d0c66a
391bf1a
 
c962a1e
 
 
 
 
 
 
 
 
 
 
 
 
 
e4b0eea
6cd713c
9aa9482
5bd4675
c962a1e
 
bda6501
c962a1e
cc828b8
c962a1e
 
 
9aa9482
391bf1a
 
bda6501
 
69bc1a2
685aafd
3b2410c
69bc1a2
9aa9482
c962a1e
391bf1a
 
26065ca
 
 
 
391bf1a
 
fc18a2b
1578762
 
fc18a2b
c962a1e
26065ca
 
391bf1a
5a73592
391bf1a
 
 
fc18a2b
1578762
 
fc18a2b
c962a1e
26065ca
 
391bf1a
5a73592
391bf1a
 
26065ca
364e345
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import os
from math import floor
from typing import Optional

import numpy as np
import spaces
import torch
import gradio as gr
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read


# configuration
MODEL_NAME = "kotoba-tech/kotoba-whisper-v2.0"
BATCH_SIZE = 16
CHUNK_LENGTH_S = 15
EXAMPLE = "./sample_diarization_japanese.mp3"

# device setting
if torch.cuda.is_available():
    torch_dtype = torch.bfloat16
    device = "cuda"
    model_kwargs = {'attn_implementation': 'sdpa'}
else:
    torch_dtype = torch.float32
    device = "cpu"
    model_kwargs = {}

# define the pipeline
pipe = pipeline(
    model=MODEL_NAME,
    chunk_length_s=CHUNK_LENGTH_S,
    batch_size=BATCH_SIZE,
    torch_dtype=torch_dtype,
    device=device,
    model_kwargs=model_kwargs,
    trust_remote_code=True
)


def format_time(start: Optional[float], end: Optional[float]):

    def _format_time(seconds: Optional[float]):
        if seconds is None:
            return "complete    "
        minutes = floor(seconds / 60)
        hours = floor(seconds / 3600)
        seconds = seconds - hours * 3600 - minutes * 60
        m_seconds = floor(round(seconds - floor(seconds), 3) * 10 ** 3)
        seconds = floor(seconds)
        return f'{hours:02}:{minutes:02}:{seconds:02}.{m_seconds:03}'

    return f"[{_format_time(start)}-> {_format_time(end)}]:"


@spaces.GPU
def get_prediction(inputs, prompt: Optional[str]):
    generate_kwargs = {"language": "ja", "task": "transcribe"}
    if prompt:
        generate_kwargs['prompt_ids'] = pipe.tokenizer.get_prompt_ids(prompt, return_tensors='pt').to(device)
    prediction = pipe(inputs, return_timestamps=True, generate_kwargs=generate_kwargs)
    text = "".join([c['text'] for c in prediction['chunks']])
    text_timestamped = "\n".join([f"{format_time(*c['timestamp'])} {c['text']}" for c in prediction['chunks']])
    return text, text_timestamped


def transcribe(inputs: str, prompt):
    if inputs is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
    with open(inputs, "rb") as f:
        inputs = f.read()
    inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    array_pad = np.zeros(int(pipe.feature_extractor.sampling_rate * 0.5))
    inputs = np.concatenate([array_pad, inputs, array_pad])
    inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
    return get_prediction(inputs, prompt)


demo = gr.Blocks()
description = (f"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses Kotoba-Whisper "
               f"checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio"
               f" files of arbitrary length.")
title = f"Transcribe Audio with {os.path.basename(MODEL_NAME)}"
mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources="microphone", type="filepath"),
        gr.Textbox(lines=1, placeholder="Prompt"),
    ],
    outputs=["text", "text"],
    title=title,
    description=description,
    allow_flagging="never",
    examples=EXAMPLE
)
file_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources="upload", type="filepath", label="Audio file"),
        gr.Textbox(lines=1, placeholder="Prompt"),
    ],
    outputs=["text", "text"],
    title=title,
    description=description,
    allow_flagging="never",
    examples=EXAMPLE
)
with demo:
    gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])
demo.queue(api_open=False, default_concurrency_limit=40).launch(show_api=False, show_error=True)