asahi417 commited on
Commit
0f5d4d0
·
verified ·
1 Parent(s): 027467e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -11
app.py CHANGED
@@ -1,5 +1,6 @@
1
- import torch
2
 
 
3
  import gradio as gr
4
  import yt_dlp as youtube_dl
5
  from transformers import pipeline
@@ -42,11 +43,8 @@ def transcribe(inputs, prompt):
42
  prompt = "。" if not prompt else prompt
43
  generate_kwargs['prompt_ids'] = pipe.tokenizer.get_prompt_ids(prompt, return_tensors='pt').to(device)
44
  text = pipe(inputs, generate_kwargs=generate_kwargs)['text']
45
- if text.startswith(f" {prompt}"):
46
- text = text[1 + len(prompt):]
47
- elif text.startswith(prompt"):
48
- text = text[len(prompt):]
49
- return text
50
 
51
  def _return_yt_html_embed(yt_url):
52
  video_id = yt_url.split("?v=")[-1]
@@ -91,11 +89,8 @@ def yt_transcribe(yt_url, prompt, max_filesize=75.0):
91
  prompt = "。" if not prompt else prompt
92
  generate_kwargs['prompt_ids'] = pipe.tokenizer.get_prompt_ids(prompt, return_tensors='pt').to(device)
93
  text = pipe(inputs, generate_kwargs=generate_kwargs)['text']
94
- if text.startswith(f" {prompt}"):
95
- text = text[1 + len(prompt):]
96
- elif text.startswith(prompt"):
97
- text = text[len(prompt):]
98
- return html_embed_str, text
99
 
100
 
101
  demo = gr.Blocks()
 
1
+ import re
2
 
3
+ import torch
4
  import gradio as gr
5
  import yt_dlp as youtube_dl
6
  from transformers import pipeline
 
43
  prompt = "。" if not prompt else prompt
44
  generate_kwargs['prompt_ids'] = pipe.tokenizer.get_prompt_ids(prompt, return_tensors='pt').to(device)
45
  text = pipe(inputs, generate_kwargs=generate_kwargs)['text']
46
+ # currently the pipeline for ASR appends the prompt at the beginning of the transcription, so remove it
47
+ return re.sub(rf"\A\s*{prompt}\s*", "", text)
 
 
 
48
 
49
  def _return_yt_html_embed(yt_url):
50
  video_id = yt_url.split("?v=")[-1]
 
89
  prompt = "。" if not prompt else prompt
90
  generate_kwargs['prompt_ids'] = pipe.tokenizer.get_prompt_ids(prompt, return_tensors='pt').to(device)
91
  text = pipe(inputs, generate_kwargs=generate_kwargs)['text']
92
+ # currently the pipeline for ASR appends the prompt at the beginning of the transcription, so remove it
93
+ return html_embed_str, re.sub(rf"\A\s*{prompt}\s*", "", text)
 
 
 
94
 
95
 
96
  demo = gr.Blocks()