Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,763 Bytes
c962a1e 69bc1a2 391bf1a 6cd713c 0f5d4d0 391bf1a c962a1e 1f8a9e2 da4f293 391bf1a c962a1e 364e345 61d0002 c962a1e 391bf1a da4f293 12b8205 da4f293 391bf1a 4dcbad1 0d0c66a 391bf1a c962a1e e4b0eea 6cd713c 9aa9482 5bd4675 c962a1e bda6501 c962a1e 9aa9482 391bf1a bda6501 69bc1a2 9aa9482 c962a1e 391bf1a d78252d 391bf1a c962a1e 391bf1a 9aa9482 391bf1a 9aa9482 c962a1e 391bf1a fc18a2b 1578762 fc18a2b c962a1e 11d44ce 391bf1a a41d73e 391bf1a fc18a2b 1578762 fc18a2b c962a1e 11d44ce 391bf1a a41d73e 391bf1a fc18a2b 6cd713c 1578762 fc18a2b 1b7a5dc 11d44ce a41d73e 391bf1a 364e345 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import os
import time
import tempfile
from math import floor
from typing import Optional, List, Dict, Any
import spaces
import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
# configuration
# MODEL_NAME = "kotoba-tech/kotoba-whisper-v1.1"
MODEL_NAME = "kotoba-tech/kotoba-whisper-v2.0"
BATCH_SIZE = 16
CHUNK_LENGTH_S = 15
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
# device setting
# if torch.cuda.is_available():
# torch_dtype = torch.bfloat16
# device = "cuda:0"
# model_kwargs = {'attn_implementation': 'sdpa'}
# else:
# torch_dtype = torch.float32
# device = "cpu"
# model_kwargs = {}
device = "cuda"
torch_dtype = torch.bfloat16
model_kwargs = {'attn_implementation': 'sdpa'}
# define the pipeline
pipe = pipeline(
model=MODEL_NAME,
chunk_length_s=CHUNK_LENGTH_S,
batch_size=BATCH_SIZE,
torch_dtype=torch_dtype,
device=device,
model_kwargs=model_kwargs,
trust_remote_code=True
)
def format_time(start: Optional[float], end: Optional[float]):
def _format_time(seconds: Optional[float]):
if seconds is None:
return "complete "
minutes = floor(seconds / 60)
hours = floor(seconds / 3600)
seconds = seconds - hours * 3600 - minutes * 60
m_seconds = floor(round(seconds - floor(seconds), 3) * 10 ** 3)
seconds = floor(seconds)
return f'{hours:02}:{minutes:02}:{seconds:02}.{m_seconds:03}'
return f"[{_format_time(start)}-> {_format_time(end)}]:"
@spaces.GPU
def get_prediction(inputs, prompt: Optional[str]):
generate_kwargs = {"language": "ja", "task": "transcribe"}
if prompt:
generate_kwargs['prompt_ids'] = pipe.tokenizer.get_prompt_ids(prompt, return_tensors='pt').to(device)
prediction = pipe(inputs, return_timestamps=True, generate_kwargs=generate_kwargs)
text = "".join([c['text'] for c in prediction['chunks']])
text_timestamped = "\n".join([
f"{format_time(*c['timestamp'])} {c['text']}" for c in prediction['chunks']
])
return text, text_timestamped
def transcribe(inputs: str, prompt):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
with open(inputs, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
return get_prediction(inputs, prompt)
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
return f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe> </center>'
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
def yt_transcribe(yt_url, prompt):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
text, text_timestamped = get_prediction(inputs, prompt)
return html_embed_str, text, text_timestamped
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="microphone", type="filepath"),
gr.Textbox(lines=1, placeholder="Prompt"),
],
outputs=["text", "text"],
# layout="horizontal",
# theme="huggingface",
title=f"Transcribe Audio with {os.path.basename(MODEL_NAME)}",
description=f"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the Kotoba-Whisper checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of arbitrary length.",
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="upload", type="filepath", label="Audio file"),
gr.Textbox(lines=1, placeholder="Prompt"),
],
outputs=["text", "text"],
# layout="horizontal",
# theme="huggingface",
title=f"Transcribe Audio with {os.path.basename(MODEL_NAME)}",
description=f"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses Kotoba-Whisper checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of arbitrary length.",
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
gr.Textbox(lines=1, placeholder="Prompt"),
],
outputs=["html", "text", "text"],
# layout="horizontal",
# theme="huggingface",
title=f"Transcribe YouTube with {os.path.basename(MODEL_NAME)}",
description=f"Transcribe long-form YouTube videos with the click of a button! Demo uses Kotoba-Whisper checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of arbitrary length.",
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
demo.queue(api_open=False, default_concurrency_limit=40).launch(show_api=False, show_error=True)
|