File size: 6,763 Bytes
c962a1e
 
 
 
69bc1a2
391bf1a
6cd713c
0f5d4d0
391bf1a
 
 
 
 
 
c962a1e
1f8a9e2
 
da4f293
 
391bf1a
 
c962a1e
364e345
 
 
 
 
 
 
 
 
61d0002
 
 
c962a1e
391bf1a
 
da4f293
12b8205
da4f293
391bf1a
4dcbad1
 
0d0c66a
391bf1a
 
c962a1e
 
 
 
 
 
 
 
 
 
 
 
 
 
e4b0eea
6cd713c
9aa9482
5bd4675
c962a1e
 
bda6501
c962a1e
 
 
 
 
 
 
9aa9482
391bf1a
 
bda6501
 
69bc1a2
 
9aa9482
c962a1e
391bf1a
 
 
d78252d
391bf1a
c962a1e
391bf1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aa9482
391bf1a
 
 
 
 
 
 
 
9aa9482
c962a1e
391bf1a
 
 
 
 
fc18a2b
1578762
 
fc18a2b
c962a1e
11d44ce
 
391bf1a
a41d73e
391bf1a
 
 
 
 
fc18a2b
1578762
 
fc18a2b
c962a1e
11d44ce
 
391bf1a
a41d73e
391bf1a
 
 
 
fc18a2b
6cd713c
1578762
fc18a2b
1b7a5dc
11d44ce
 
a41d73e
 
391bf1a
 
 
 
 
 
364e345
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import time
import tempfile
from math import floor
from typing import Optional, List, Dict, Any

import spaces
import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read


# configuration
# MODEL_NAME = "kotoba-tech/kotoba-whisper-v1.1"
MODEL_NAME = "kotoba-tech/kotoba-whisper-v2.0"
BATCH_SIZE = 16
CHUNK_LENGTH_S = 15
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600  # limit to 1 hour YouTube files
# device setting
# if torch.cuda.is_available():
#     torch_dtype = torch.bfloat16
#     device = "cuda:0"
#     model_kwargs = {'attn_implementation': 'sdpa'}
# else:
#     torch_dtype = torch.float32
#     device = "cpu"
#     model_kwargs = {}
device = "cuda"
torch_dtype = torch.bfloat16
model_kwargs = {'attn_implementation': 'sdpa'}

# define the pipeline
pipe = pipeline(
    model=MODEL_NAME,
    chunk_length_s=CHUNK_LENGTH_S,
    batch_size=BATCH_SIZE,
    torch_dtype=torch_dtype,
    device=device,
    model_kwargs=model_kwargs,
    trust_remote_code=True
)


def format_time(start: Optional[float], end: Optional[float]):

    def _format_time(seconds: Optional[float]):
        if seconds is None:
            return "complete    "
        minutes = floor(seconds / 60)
        hours = floor(seconds / 3600)
        seconds = seconds - hours * 3600 - minutes * 60
        m_seconds = floor(round(seconds - floor(seconds), 3) * 10 ** 3)
        seconds = floor(seconds)
        return f'{hours:02}:{minutes:02}:{seconds:02}.{m_seconds:03}'

    return f"[{_format_time(start)}-> {_format_time(end)}]:"


@spaces.GPU
def get_prediction(inputs, prompt: Optional[str]):
    generate_kwargs = {"language": "ja", "task": "transcribe"}
    if prompt:
        generate_kwargs['prompt_ids'] = pipe.tokenizer.get_prompt_ids(prompt, return_tensors='pt').to(device)
    prediction = pipe(inputs, return_timestamps=True, generate_kwargs=generate_kwargs)
    text = "".join([c['text'] for c in prediction['chunks']])
    text_timestamped = "\n".join([
        f"{format_time(*c['timestamp'])} {c['text']}" for c in prediction['chunks']
    ])
    return text, text_timestamped


def transcribe(inputs: str, prompt):
    if inputs is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
    with open(inputs, "rb") as f:
        inputs = f.read()
    inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
    return get_prediction(inputs, prompt)


def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    return f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe> </center>'


def download_yt_audio(yt_url, filename):
    info_loader = youtube_dl.YoutubeDL()
    try:
        info = info_loader.extract_info(yt_url, download=False)
    except youtube_dl.utils.DownloadError as err:
        raise gr.Error(str(err))
    file_length = info["duration_string"]
    file_h_m_s = file_length.split(":")
    file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
    if len(file_h_m_s) == 1:
        file_h_m_s.insert(0, 0)
    if len(file_h_m_s) == 2:
        file_h_m_s.insert(0, 0)
    file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
    if file_length_s > YT_LENGTH_LIMIT_S:
        yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
        file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
        raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
    ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        try:
            ydl.download([yt_url])
        except youtube_dl.utils.ExtractorError as err:
            raise gr.Error(str(err))


def yt_transcribe(yt_url, prompt):
    html_embed_str = _return_yt_html_embed(yt_url)
    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "video.mp4")
        download_yt_audio(yt_url, filepath)
        with open(filepath, "rb") as f:
            inputs = f.read()
    inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
    text, text_timestamped = get_prediction(inputs, prompt)
    return html_embed_str, text, text_timestamped


demo = gr.Blocks()
mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources="microphone", type="filepath"),
        gr.Textbox(lines=1, placeholder="Prompt"),
    ],
    outputs=["text", "text"],
    # layout="horizontal",
    # theme="huggingface",
    title=f"Transcribe Audio with {os.path.basename(MODEL_NAME)}",
    description=f"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the Kotoba-Whisper checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of arbitrary length.",
    allow_flagging="never",
)

file_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources="upload", type="filepath", label="Audio file"),
        gr.Textbox(lines=1, placeholder="Prompt"),
    ],
    outputs=["text", "text"],
    # layout="horizontal",
    # theme="huggingface",
    title=f"Transcribe Audio with {os.path.basename(MODEL_NAME)}",
    description=f"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses Kotoba-Whisper checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of arbitrary length.",
    allow_flagging="never",
)
yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[
        gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
        gr.Textbox(lines=1, placeholder="Prompt"),
    ],
    outputs=["html", "text", "text"],
    # layout="horizontal",
    # theme="huggingface",
    title=f"Transcribe YouTube with {os.path.basename(MODEL_NAME)}",
    description=f"Transcribe long-form YouTube videos with the click of a button! Demo uses Kotoba-Whisper checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of arbitrary length.",
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])

demo.queue(api_open=False, default_concurrency_limit=40).launch(show_api=False, show_error=True)