|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
print("Loading tokenizer...") |
|
tokenizer = AutoTokenizer.from_pretrained("kolbeins/model") |
|
print("Tokenizer loaded.") |
|
|
|
print("Loading model...") |
|
model = AutoModelForCausalLM.from_pretrained("kolbeins/model") |
|
print("Model loaded.") |
|
|
|
def chat(input_txt): |
|
""" |
|
Function to generate a response using the model for the given input text. |
|
""" |
|
try: |
|
print("Tokenizing input...") |
|
|
|
inputs = tokenizer(input_txt, return_tensors="pt", padding=True, truncation=True, max_length=512) |
|
print(f"Tokenized inputs: {inputs}") |
|
|
|
print("Generating output...") |
|
|
|
outputs = model.generate(**inputs) |
|
print(f"Generated output: {outputs}") |
|
|
|
print("Decoding output...") |
|
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
print(f"Decoded response: {response}") |
|
|
|
|
|
return response |
|
|
|
except Exception as e: |
|
print(f"Error during inference: {e}") |
|
return f"Error: {e}" |
|
|
|
|
|
demo = gr.Interface(fn=chat, inputs="text", outputs="text") |
|
|
|
|
|
print("Launching Gradio interface...") |
|
demo.launch() |
|
|