kolbeins commited on
Commit
0ea7176
·
1 Parent(s): 6274e5e

added logs along the way - debugging

Browse files
Files changed (1) hide show
  1. app.py +34 -8
app.py CHANGED
@@ -1,19 +1,45 @@
1
  import gradio as gr
2
- #from transformers import pipeline
3
- #from transformers import AutoModelForCausalLM, AutoTokenizer
4
  from transformers import AutoTokenizer, AutoModelForCausalLM
5
 
 
 
6
  tokenizer = AutoTokenizer.from_pretrained("kolbeins/model")
7
- model = AutoModelForCausalLM.from_pretrained("kolbeins/model")
8
 
 
 
 
9
 
10
  def chat(input_txt):
11
- inputs = tokenizer(input_txt, return_tensors="pt")
12
- outputs = model.generate(**inputs)
13
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
14
- return response
 
 
 
 
15
 
 
 
 
 
16
 
 
 
 
 
 
 
 
17
 
 
 
 
 
 
18
  demo = gr.Interface(fn=chat, inputs="text", outputs="text")
19
- demo.launch()
 
 
 
 
1
  import gradio as gr
 
 
2
  from transformers import AutoTokenizer, AutoModelForCausalLM
3
 
4
+ # Load the tokenizer and model
5
+ print("Loading tokenizer...")
6
  tokenizer = AutoTokenizer.from_pretrained("kolbeins/model")
7
+ print("Tokenizer loaded.")
8
 
9
+ print("Loading model...")
10
+ model = AutoModelForCausalLM.from_pretrained("kolbeins/model")
11
+ print("Model loaded.")
12
 
13
  def chat(input_txt):
14
+ """
15
+ Function to generate a response using the model for the given input text.
16
+ """
17
+ try:
18
+ print("Tokenizing input...")
19
+ # Tokenizing the input text, making sure to add special tokens if necessary
20
+ inputs = tokenizer(input_txt, return_tensors="pt", padding=True, truncation=True, max_length=512)
21
+ print(f"Tokenized inputs: {inputs}")
22
 
23
+ print("Generating output...")
24
+ # Generate the output using the model
25
+ outputs = model.generate(**inputs)
26
+ print(f"Generated output: {outputs}")
27
 
28
+ print("Decoding output...")
29
+ # Decode the output (the model generates token IDs, so we need to decode them back to text)
30
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
31
+ print(f"Decoded response: {response}")
32
+
33
+ # Return the generated response
34
+ return response
35
 
36
+ except Exception as e:
37
+ print(f"Error during inference: {e}")
38
+ return f"Error: {e}"
39
+
40
+ # Define the Gradio interface for the chatbot
41
  demo = gr.Interface(fn=chat, inputs="text", outputs="text")
42
+
43
+ # Launch the interface
44
+ print("Launching Gradio interface...")
45
+ demo.launch()