added logs along the way - debugging
Browse files
app.py
CHANGED
@@ -1,19 +1,45 @@
|
|
1 |
import gradio as gr
|
2 |
-
#from transformers import pipeline
|
3 |
-
#from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
|
|
|
|
|
6 |
tokenizer = AutoTokenizer.from_pretrained("kolbeins/model")
|
7 |
-
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
def chat(input_txt):
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
15 |
|
|
|
|
|
|
|
|
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
18 |
demo = gr.Interface(fn=chat, inputs="text", outputs="text")
|
19 |
-
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
|
4 |
+
# Load the tokenizer and model
|
5 |
+
print("Loading tokenizer...")
|
6 |
tokenizer = AutoTokenizer.from_pretrained("kolbeins/model")
|
7 |
+
print("Tokenizer loaded.")
|
8 |
|
9 |
+
print("Loading model...")
|
10 |
+
model = AutoModelForCausalLM.from_pretrained("kolbeins/model")
|
11 |
+
print("Model loaded.")
|
12 |
|
13 |
def chat(input_txt):
|
14 |
+
"""
|
15 |
+
Function to generate a response using the model for the given input text.
|
16 |
+
"""
|
17 |
+
try:
|
18 |
+
print("Tokenizing input...")
|
19 |
+
# Tokenizing the input text, making sure to add special tokens if necessary
|
20 |
+
inputs = tokenizer(input_txt, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
21 |
+
print(f"Tokenized inputs: {inputs}")
|
22 |
|
23 |
+
print("Generating output...")
|
24 |
+
# Generate the output using the model
|
25 |
+
outputs = model.generate(**inputs)
|
26 |
+
print(f"Generated output: {outputs}")
|
27 |
|
28 |
+
print("Decoding output...")
|
29 |
+
# Decode the output (the model generates token IDs, so we need to decode them back to text)
|
30 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
31 |
+
print(f"Decoded response: {response}")
|
32 |
+
|
33 |
+
# Return the generated response
|
34 |
+
return response
|
35 |
|
36 |
+
except Exception as e:
|
37 |
+
print(f"Error during inference: {e}")
|
38 |
+
return f"Error: {e}"
|
39 |
+
|
40 |
+
# Define the Gradio interface for the chatbot
|
41 |
demo = gr.Interface(fn=chat, inputs="text", outputs="text")
|
42 |
+
|
43 |
+
# Launch the interface
|
44 |
+
print("Launching Gradio interface...")
|
45 |
+
demo.launch()
|