GranaMeasure / app.py
kkuczkowska's picture
Upload folder using huggingface_hub
8948e19 verified
import os
import shutil
import time
import uuid
from datetime import datetime
from decimal import Decimal
import gradio as gr
import matplotlib.pyplot as plt
from settings import DEMO
plt.switch_backend("agg") # fix for "RuntimeError: main thread is not in main loop"
import numpy as np
import pandas as pd
from PIL import Image
from model import GranaAnalyser
ga = GranaAnalyser(
"weights/yolo/20240604_yolov8_segm_ABRCR1_all_train4_best.pt",
"weights/AS_square_v16.ckpt",
"weights/period_measurer_weights-1.298_real_full-fa12970.ckpt",
)
def calc_ratio(pixels, nano):
"""
Calculates ratio of pixels to nanometers and returns as str to populate ratio_input
:param pixels:
:param nano:
:return:
"""
if not (pixels and nano):
pass
else:
res = pixels / nano
return res
# https://jakevdp.github.io/PythonDataScienceHandbook/05.13-kernel-density-estimation.html
def KDE(dataset, h):
# the Kernel function
def K(x):
return np.exp(-(x ** 2) / 2) / np.sqrt(2 * np.pi)
n_samples = dataset.size
x_range = dataset # x-value range for plotting KDEs
total_sum = 0
# iterate over datapoints
for i, xi in enumerate(dataset):
total_sum += K((x_range - xi) / h)
y_range = total_sum / (h * n_samples)
return y_range
def prepare_files_for_download(
dir_name,
grana_data,
aggregated_data,
detection_visualizations_dict,
images_grana_dict,
):
"""
Save and zip files for download
:param dir_name:
:param grana_data: DataFrame containing all grana measurements
:param aggregated_data: dict containing aggregated measurements
:return:
"""
dir_to_zip = f"{dir_name}/to_zip"
# raw data
grana_data_csv_path = f"{dir_to_zip}/grana_raw_data.csv"
grana_data.to_csv(grana_data_csv_path, index=False)
# aggregated measurements
aggregated_csv_path = f"{dir_to_zip}/grana_aggregated_data.csv"
aggregated_data.to_csv(aggregated_csv_path)
# annotated pictures
masked_images_dir = f"{dir_to_zip}/annotated_images"
os.makedirs(masked_images_dir)
for img_name, img in detection_visualizations_dict.items():
filename_split = img_name.split(".")
extension = filename_split[-1]
filename = ".".join(filename_split[:-1])
filename = f"{filename}_annotated.{extension}"
img.save(f"{masked_images_dir}/{filename}")
# single_grana images
grana_images_dir = f"{dir_to_zip}/single_grana_images"
os.makedirs(grana_images_dir)
org_images_dict = pd.Series(
grana_data["source image"].values, index=grana_data["granum ID"]
).to_dict()
for img_name, img in images_grana_dict.items():
org_filename = org_images_dict[img_name]
org_filename_split = org_filename.split(".")
org_filename_no_ext = ".".join(org_filename_split[:-1])
img_name_ext = f"{org_filename_no_ext}_granum_{str(img_name)}.png"
img.save(f"{grana_images_dir}/{img_name_ext}")
# zip all files
date_str = datetime.today().strftime("%Y-%m-%d")
zip_name = f"GRANA_results_{date_str}"
zip_path = f"{dir_name}/{zip_name}"
shutil.make_archive(zip_path, "zip", dir_to_zip)
# delete to_zip dir
zip_dir_path = os.path.join(os.getcwd(), dir_to_zip)
shutil.rmtree(zip_dir_path)
download_file_path = f"{zip_path}.zip"
return download_file_path
def show_info_on_submit(s):
return (
gr.Button(interactive=False),
gr.Button(interactive=False),
gr.Row(visible=True),
gr.Row(visible=False),
)
def load_css():
with open("styles.css", "r") as f:
css_content = f.read()
return css_content
primary_hue = gr.themes.Color(
c50="#e1f8ee",
c100="#b7efd5",
c200="#8de6bd",
c300="#63dda5",
c400="#39d48d",
c500="#27b373",
c600="#1e8958",
c700="#155f3d",
c800="#0c3522",
c900="#030b07",
c950="#000",
)
theme = gr.themes.Default(
primary_hue=primary_hue,
font=[gr.themes.GoogleFont("Ubuntu"), "ui-sans-serif", "system-ui", "sans-serif"],
)
def draw_violin_plot(y, ylabel, title):
# only generate plot for 3 or more values
if y.count() < 3:
return None
# Colors
RED_DARK = "#850e00"
DARK_GREEN = "#0c3522"
BRIGHT_GREEN = "#8de6bd"
# Create jittered version of "x" (which is only 1)
x_jittered = []
kde = KDE(y, (y.max() - y.min()) / y.size / 2)
kde = kde / kde.max() * 0.2
for y_val in kde:
x_jittered.append(1 + np.random.uniform(-y_val, y_val, 1))
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.scatter(x=x_jittered, y=y, s=20, alpha=0.4, c=DARK_GREEN)
violins = ax.violinplot(
y,
widths=0.45,
bw_method="silverman",
showmeans=False,
showmedians=False,
showextrema=False,
)
# change violin color
for pc in violins["bodies"]:
pc.set_facecolor(BRIGHT_GREEN)
# add a boxplot to ax
# but make the whiskers length equal to 1 SD, i.e. in the proportion of the IQ range, but this length should start from the mean but be visible from the box boundary
lower = np.mean(y) - 1 * np.std(y)
upper = np.mean(y) + 1 * np.std(y)
medianprops = dict(linewidth=1, color="black", solid_capstyle="butt")
boxplot_stats = [
{
"med": np.median(y),
"q1": np.percentile(y, 25),
"q3": np.percentile(y, 75),
"whislo": lower,
"whishi": upper,
}
]
ax.bxp(
boxplot_stats, # data for the boxplot
showfliers=False, # do not show the outliers beyond the caps.
showcaps=True, # show the caps
medianprops=medianprops,
)
# Add mean value point
ax.scatter(1, y.mean(), s=30, color=RED_DARK, zorder=3)
ax.set_xticks([])
ax.set_ylabel(ylabel)
ax.set_title(title)
fig.tight_layout()
return fig
def transform_aggregated_results_table(results_dict):
MEASUREMENT_HEADER = "measurement [unit]"
VALUE_HEADER = "value +-SD"
def get_value_str(value, std):
if np.isnan(value) or np.isnan(std):
return "-"
value_str = str(Decimal(str(value)).quantize(Decimal("0.01")))
std_str = str(Decimal(str(std)).quantize(Decimal("0.01")))
return f"{value_str} +-{std_str}"
def append_to_dict(new_key, old_val_key, old_sd_key):
aggregated_dict[MEASUREMENT_HEADER].append(new_key)
value_str = get_value_str(results_dict[old_val_key], results_dict[old_sd_key])
aggregated_dict[VALUE_HEADER].append(value_str)
aggregated_dict = {MEASUREMENT_HEADER: [], VALUE_HEADER: []}
# area
append_to_dict("area [nm^2]", "area nm^2", "area nm^2 std")
# perimeter
append_to_dict("perimeter [nm]", "perimeter nm", "perimeter nm std")
# diameter
append_to_dict("diameter [nm]", "diameter nm", "diameter nm std")
# height
append_to_dict("height [nm]", "height nm", "height nm std")
# number of layers
append_to_dict("number of thylakoids", "Number of layers", "Number of layers std")
# SRD
append_to_dict("SRD [nm]", "period nm", "period nm std")
# GSI
append_to_dict("GSI", "GSI", "GSI std")
# N grana
aggregated_dict[MEASUREMENT_HEADER].append("number of grana")
aggregated_dict[VALUE_HEADER].append(str(int(results_dict["N grana"])))
return aggregated_dict
def rename_columns_in_results_table(results_table):
column_names = {
"Granum ID": "granum ID",
"File name": "source image",
"area nm^2": "area [nm^2]",
"perimeter nm": "perimeter [nm]",
"diameter nm": "diameter [nm]",
"height nm": "height [nm]",
"Number of layers": "number of thylakoids",
"period nm": "SRD [nm]",
"period SD nm": "SRD SD [nm]",
}
results_table = results_table.rename(columns=column_names)
return results_table
with gr.Blocks(css=load_css(), theme=theme) as demo:
svg = """
<svg id="Layer_1" data-name="Layer 1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 30.73 33.38">
<defs>
<style>
.cls-1 {
fill: #27b373;
stroke-width: 0px;
}
</style>
</defs>
<path class="cls-1" d="M19.69,11.73h-3.22c-2.74,0-4.96,2.22-4.96,4.96h0c0,2.74,2.22,4.96,4.96,4.96h3.43c.56,0,1,.51.89,1.09-.08.43-.49.72-.92.72h-8.62c-.74,0-1.34-.6-1.34-1.34v-10.87c0-.74.6-1.34,1.34-1.34h13.44c2.73,0,4.95-2.22,4.95-4.95h0c0-2.75-2.22-4.97-4.96-4.97h-13.85C4.85,0,0,4.85,0,10.83v11.71c0,5.98,4.85,10.83,10.83,10.83h9.07c5.76,0,10.49-4.52,10.81-10.21.35-6.29-4.72-11.44-11.02-11.44ZM19.9,31.4h-9.07c-4.89,0-8.85-3.96-8.85-8.85v-11.71C1.98,5.95,5.95,1.98,10.83,1.98h13.81c1.64,0,2.97,1.33,2.97,2.97h0c0,1.65-1.33,2.97-2.96,2.97h-13.4c-1.83,0-3.32,1.49-3.32,3.32v10.87c0,1.83,1.49,3.32,3.32,3.32h8.56c1.51,0,2.83-1.12,2.97-2.62.16-1.72-1.2-3.16-2.88-3.16h-3.52c-1.64,0-2.97-1.33-2.97-2.97h0c0-1.64,1.33-2.97,2.97-2.97h3.34c4.83,0,8.9,3.81,9.01,8.64s-3.9,9.04-8.84,9.04Z"/>
<path class="cls-1" d="M19.9,29.41h-9.07c-3.79,0-6.87-3.07-6.87-6.87v-11.71c0-3.79,3.07-6.87,6.87-6.87h13.81c.55,0,.99.44.99.99h0c0,.55-.44.99-.99.99h-13.81c-2.7,0-4.88,2.19-4.88,4.88v11.71c0,2.7,2.19,4.88,4.88,4.88h8.94c2.64,0,4.91-2.05,5-4.7s-2.12-5.05-4.87-5.05h-3.52c-.55,0-.99-.44-.99-.99h0c0-.55.44-.99.99-.99h3.36c3.74,0,6.9,2.92,7.01,6.66.11,3.87-3.01,7.06-6.85,7.06Z"/>
</svg>
"""
gr.HTML(
f'<div class="header"><div id="header-logo">{svg}</div><div id="header-text">GRANA<div></div>'
)
with gr.Row(elem_classes="input-row"): # input
with gr.Column():
gr.HTML(
"<h1>1. Choose images to upload. All the images need to be of the same scale and experimental variant.</h1>"
)
img_input = gr.File(file_count="multiple")
gr.HTML("<h1>2. Set the scale of the images for the measurements.</h1>")
with gr.Row():
with gr.Column():
gr.HTML("Either provide pixel per nanometer ratio...")
ratio_input = gr.Number(
label="pixel per nm", precision=3, step=0.001
)
with gr.Column():
gr.HTML("...or length of the scale bar in pixels and nanometers.")
pixels_input = gr.Number(label="Length in pixels")
nano_input = gr.Number(label="Length in nanometers")
pixels_input.change(
calc_ratio,
inputs=[pixels_input, nano_input],
outputs=ratio_input,
)
nano_input.change(
calc_ratio,
inputs=[pixels_input, nano_input],
outputs=ratio_input,
)
with gr.Row():
clear_btn = gr.ClearButton(img_input, "Clear")
submit_btn = gr.Button("Submit", variant="primary")
with gr.Row(visible=False) as loading_row:
with gr.Column():
gr.HTML(
"<div class='processed-info'>Images are being processed. This may take a while...</div>"
)
with gr.Row(visible=False) as output_row:
with gr.Column():
gr.HTML(
'<div class="results-header">Results</div>'
"<p>Full results are a zip file containing:<p>"
"<ul>- grana_raw_data.csv: a table with full grana measurements,</ul>"
"<ul>- grana_aggregated_data.csv: a table with aggregated measurements,</ul>"
'<ul>- directory "annotated_images" with all submitted images with masks on detected grana,</ul>'
'<ul>- directory "single_grana_images" with images of all detected grana.</ul>'
"<p>Note that GRANA only stores the result files for 1 hour.</p>",
elem_classes="input-row",
)
with gr.Row(elem_classes="input-row"):
download_file_out = gr.DownloadButton(
label="Download results",
variant="primary",
elem_classes="margin-bottom",
)
with gr.Row():
gr.HTML(
'<h2 class="title">Annotated images</h2>'
"Gallery of uploaded images with masks of recognized grana structures. "
"Each granum mask is "
"labeled with its number. Note that only fully visible grana in the image are masked."
)
with gr.Row(elem_classes="margin-bottom"):
gallery_out = gr.Gallery(
columns=4,
rows=2,
object_fit="contain",
label="Detection visualizations",
show_download_button=False,
)
with gr.Row(elem_classes="input-row"):
gr.HTML(
'<h2 class="title">Aggregated results for all uploaded images</h2>'
)
with gr.Row(elem_classes=["input-row", "margin-bottom"]):
table_out = gr.Dataframe(label="Aggregated data")
with gr.Row():
gr.HTML(
'<h2 class="title">Violin graphs</h2>'
"These graphs present aggregated results for selected structural parameters. "
"The graph for each parameter is only generated if three or more values are available. "
"Each graph "
"displays individual data points, a box plot indicating the first and third quartiles, whiskers "
"marking the standard deviation (SD), the median value (horizontal line on the box plot), "
"the mean value (red dot), and a density plot where the width represents the frequency."
)
with gr.Row():
area_plot_out = gr.Plot(label="Area")
perimeter_plot_out = gr.Plot(label="Perimeter")
gsi_plot_out = gr.Plot(label="GSI")
with gr.Row(elem_classes="margin-bottom"):
diameter_plot_out = gr.Plot(label="Diameter")
height_plot_out = gr.Plot(label="Height")
srd_plot_out = gr.Plot(label="SRD")
with gr.Row():
gr.HTML(
'<h2 class="title">Recognized and rotated grana structures</h2>'
)
with gr.Row(elem_classes="margin-bottom"):
gallery_single_grana_out = gr.Gallery(
columns=4,
rows=2,
object_fit="contain",
label="Single grana images",
show_download_button=False,
)
with gr.Row():
gr.HTML(
'<h2 class="title">Full results</h2>'
"Note that structural parameters other than area and perimeter are only calculated for the grana "
"whose direction and/or SRD could be estimated."
)
with gr.Row():
table_full_out = gr.Dataframe(label="Full measurements data")
submit_btn.click(
show_info_on_submit,
inputs=[submit_btn],
outputs=[submit_btn, clear_btn, loading_row, output_row],
)
def enable_submit():
return (
gr.Button(interactive=True),
gr.Button(interactive=True),
gr.Row(visible=False),
)
def gradio_analize_image(images, scale):
"""
Model accepts following parameters:
:param images: list of images to be processed, in either tiff or png format
:param scale: float, nm to pixel ratio
Model returns the following objects:
- detection_visualizations: list of images with masks to be displayed as gallery and served to download
as zip of images
- grana_data: dataframe with measurements for each image to be served to download as a csv file
- images_grana: list of images with single grana to be served to download as zip of images
- aggregated_data: dataframe with aggregated measurements for all images to be displayed as table and served
to download as csv
"""
# validate that at least one image has been uploaded
if images is None or len(images) == 0:
raise gr.Error("Please upload at least one image")
# on demo instance, we limit the number of images to 5
if DEMO:
if len(images) > 5:
raise gr.Error("In demo version it is possible to analyze up to 5 images.")
# validate that scale has been provided correctly
if scale is None or scale == 0:
raise gr.Error("Please provide scale. Use dot as decimal separator")
# validate that all images are png or tiff
for image in images:
if not image.name.lower().endswith((".png", ".tif", ".jpg", ".jpeg")):
raise gr.Error("Only png, tiff, jpg ang jpeg images are supported")
# clean up previous results
# find all directories in current working directory that start with "results_"
# that were created more than 1 hour ago and delete them with all contents
for directory_name in os.listdir():
if directory_name.startswith("results_"):
dir_path = os.path.join(os.getcwd(), directory_name)
if os.path.isdir(dir_path):
if time.time() - os.path.getctime(dir_path) > 60 * 60:
shutil.rmtree(dir_path)
# create a directory for results
results_dir_name = "results_{uuid}".format(uuid=uuid.uuid4().hex)
os.makedirs(results_dir_name)
zip_dir_name = f"{results_dir_name}/to_zip"
os.makedirs(zip_dir_name)
# model takes a dict of images, so we need to convert input to list of PIL.PngImagePlugin.PngImageFile or
# PIL.TiffImagePlugin.TiffImageFile objects
images_dict = {
image.name.split("/")[-1]: Image.open(image.name)
for i, image in enumerate(images)
}
# model works here
(
detection_visualizations_dict,
grana_data,
images_grana_dict,
aggregated_data,
) = ga.predict(images_dict, scale)
detection_visualizations = list(detection_visualizations_dict.values())
images_grana = list(images_grana_dict.values())
# rearrange aggregated data to be displayed as table
aggregated_dict = transform_aggregated_results_table(aggregated_data)
aggregated_df_transposed = pd.DataFrame.from_dict(aggregated_dict)
# rename columns in full results
grana_data = rename_columns_in_results_table(grana_data)
# save files returned by model to disk so they can be retrieved for downloading
download_file_path = prepare_files_for_download(
results_dir_name,
grana_data,
aggregated_df_transposed,
detection_visualizations_dict,
images_grana_dict,
)
# generate plot
area_fig = draw_violin_plot(
grana_data["area [nm^2]"].dropna(),
"Granum area [nm^2]",
"Grana areas from all uploaded images",
)
perimeter_fig = draw_violin_plot(
grana_data["perimeter [nm]"].dropna(),
"Granum perimeter [nm]",
"Grana perimeters from all uploaded images",
)
gsi_fig = draw_violin_plot(
grana_data["GSI"].dropna(),
"GSI",
"GSI from all uploaded images",
)
diameter_fig = draw_violin_plot(
grana_data["diameter [nm]"].dropna(),
"Granum diameter [nm]",
"Grana diameters from all uploaded images",
)
height_fig = draw_violin_plot(
grana_data["height [nm]"].dropna(),
"Granum height [nm]",
"Grana heights from all uploaded images",
)
srd_fig = draw_violin_plot(
grana_data["SRD [nm]"].dropna(), "SRD [nm]", "SRD from all uploaded images"
)
return [
gr.Row(visible=True),
gr.Row(visible=True),
download_file_path,
detection_visualizations,
aggregated_df_transposed,
area_fig,
perimeter_fig,
gsi_fig,
diameter_fig,
height_fig,
srd_fig,
images_grana,
grana_data,
]
submit_btn.click(
fn=gradio_analize_image,
inputs=[
img_input,
ratio_input,
],
outputs=[
loading_row,
output_row,
# file_download_checkboxes,
download_file_out,
gallery_out,
table_out,
area_plot_out,
perimeter_plot_out,
gsi_plot_out,
diameter_plot_out,
height_plot_out,
srd_plot_out,
gallery_single_grana_out,
table_full_out,
],
).then(fn=enable_submit, inputs=[], outputs=[submit_btn, clear_btn, loading_row])
demo.launch(
share=False, debug=True, server_name="0.0.0.0", allowed_paths=["images/logo.svg"]
)