File size: 21,542 Bytes
8948e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
import os
import shutil
import time
import uuid
from datetime import datetime
from decimal import Decimal

import gradio as gr
import matplotlib.pyplot as plt

from settings import DEMO

plt.switch_backend("agg")  # fix for "RuntimeError: main thread is not in main loop"
import numpy as np
import pandas as pd
from PIL import Image

from model import GranaAnalyser

ga = GranaAnalyser(
    "weights/yolo/20240604_yolov8_segm_ABRCR1_all_train4_best.pt",
    "weights/AS_square_v16.ckpt",
    "weights/period_measurer_weights-1.298_real_full-fa12970.ckpt",
)


def calc_ratio(pixels, nano):
    """
    Calculates ratio of pixels to nanometers and returns as str to populate ratio_input
    :param pixels:
    :param nano:
    :return:
    """
    if not (pixels and nano):
        pass
    else:
        res = pixels / nano
        return res


# https://jakevdp.github.io/PythonDataScienceHandbook/05.13-kernel-density-estimation.html
def KDE(dataset, h):
    # the Kernel function
    def K(x):
        return np.exp(-(x ** 2) / 2) / np.sqrt(2 * np.pi)

    n_samples = dataset.size

    x_range = dataset  # x-value range for plotting KDEs

    total_sum = 0
    # iterate over datapoints
    for i, xi in enumerate(dataset):
        total_sum += K((x_range - xi) / h)

        y_range = total_sum / (h * n_samples)

    return y_range


def prepare_files_for_download(
    dir_name,
    grana_data,
    aggregated_data,
    detection_visualizations_dict,
    images_grana_dict,
):
    """
    Save and zip files for download
    :param dir_name:
    :param grana_data: DataFrame containing all grana measurements
    :param aggregated_data: dict containing aggregated measurements
    :return:
    """
    dir_to_zip = f"{dir_name}/to_zip"

    # raw data
    grana_data_csv_path = f"{dir_to_zip}/grana_raw_data.csv"
    grana_data.to_csv(grana_data_csv_path, index=False)

    # aggregated measurements
    aggregated_csv_path = f"{dir_to_zip}/grana_aggregated_data.csv"
    aggregated_data.to_csv(aggregated_csv_path)

    # annotated pictures
    masked_images_dir = f"{dir_to_zip}/annotated_images"
    os.makedirs(masked_images_dir)
    for img_name, img in detection_visualizations_dict.items():
        filename_split = img_name.split(".")
        extension = filename_split[-1]
        filename = ".".join(filename_split[:-1])
        filename = f"{filename}_annotated.{extension}"
        img.save(f"{masked_images_dir}/{filename}")

    # single_grana images
    grana_images_dir = f"{dir_to_zip}/single_grana_images"
    os.makedirs(grana_images_dir)
    org_images_dict = pd.Series(
        grana_data["source image"].values, index=grana_data["granum ID"]
    ).to_dict()
    for img_name, img in images_grana_dict.items():
        org_filename = org_images_dict[img_name]
        org_filename_split = org_filename.split(".")
        org_filename_no_ext = ".".join(org_filename_split[:-1])
        img_name_ext = f"{org_filename_no_ext}_granum_{str(img_name)}.png"
        img.save(f"{grana_images_dir}/{img_name_ext}")

    # zip all files
    date_str = datetime.today().strftime("%Y-%m-%d")
    zip_name = f"GRANA_results_{date_str}"
    zip_path = f"{dir_name}/{zip_name}"
    shutil.make_archive(zip_path, "zip", dir_to_zip)

    # delete to_zip dir
    zip_dir_path = os.path.join(os.getcwd(), dir_to_zip)
    shutil.rmtree(zip_dir_path)

    download_file_path = f"{zip_path}.zip"
    return download_file_path


def show_info_on_submit(s):
    return (
        gr.Button(interactive=False),
        gr.Button(interactive=False),
        gr.Row(visible=True),
        gr.Row(visible=False),
    )


def load_css():
    with open("styles.css", "r") as f:
        css_content = f.read()
    return css_content


primary_hue = gr.themes.Color(
    c50="#e1f8ee",
    c100="#b7efd5",
    c200="#8de6bd",
    c300="#63dda5",
    c400="#39d48d",
    c500="#27b373",
    c600="#1e8958",
    c700="#155f3d",
    c800="#0c3522",
    c900="#030b07",
    c950="#000",
)


theme = gr.themes.Default(
    primary_hue=primary_hue,
    font=[gr.themes.GoogleFont("Ubuntu"), "ui-sans-serif", "system-ui", "sans-serif"],
)


def draw_violin_plot(y, ylabel, title):
    # only generate plot for 3 or more values
    if y.count() < 3:
        return None

    # Colors
    RED_DARK = "#850e00"
    DARK_GREEN = "#0c3522"
    BRIGHT_GREEN = "#8de6bd"

    # Create jittered version of "x" (which is only 1)
    x_jittered = []
    kde = KDE(y, (y.max() - y.min()) / y.size / 2)
    kde = kde / kde.max() * 0.2
    for y_val in kde:
        x_jittered.append(1 + np.random.uniform(-y_val, y_val, 1))

    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    ax.scatter(x=x_jittered, y=y, s=20, alpha=0.4, c=DARK_GREEN)

    violins = ax.violinplot(
        y,
        widths=0.45,
        bw_method="silverman",
        showmeans=False,
        showmedians=False,
        showextrema=False,
    )

    # change violin color
    for pc in violins["bodies"]:
        pc.set_facecolor(BRIGHT_GREEN)

    # add a boxplot to ax
    # but make the whiskers length equal to 1 SD, i.e. in the proportion of the IQ range, but this length should start from the mean but be visible from the box boundary
    lower = np.mean(y) - 1 * np.std(y)
    upper = np.mean(y) + 1 * np.std(y)

    medianprops = dict(linewidth=1, color="black", solid_capstyle="butt")
    boxplot_stats = [
        {
            "med": np.median(y),
            "q1": np.percentile(y, 25),
            "q3": np.percentile(y, 75),
            "whislo": lower,
            "whishi": upper,
        }
    ]

    ax.bxp(
        boxplot_stats,  # data for the boxplot
        showfliers=False,  # do not show the outliers beyond the caps.
        showcaps=True,  # show the caps
        medianprops=medianprops,
    )

    # Add mean value point
    ax.scatter(1, y.mean(), s=30, color=RED_DARK, zorder=3)

    ax.set_xticks([])
    ax.set_ylabel(ylabel)
    ax.set_title(title)
    fig.tight_layout()

    return fig


def transform_aggregated_results_table(results_dict):
    MEASUREMENT_HEADER = "measurement [unit]"
    VALUE_HEADER = "value +-SD"

    def get_value_str(value, std):
        if np.isnan(value) or np.isnan(std):
            return "-"
        value_str = str(Decimal(str(value)).quantize(Decimal("0.01")))
        std_str = str(Decimal(str(std)).quantize(Decimal("0.01")))
        return f"{value_str} +-{std_str}"

    def append_to_dict(new_key, old_val_key, old_sd_key):
        aggregated_dict[MEASUREMENT_HEADER].append(new_key)
        value_str = get_value_str(results_dict[old_val_key], results_dict[old_sd_key])
        aggregated_dict[VALUE_HEADER].append(value_str)

    aggregated_dict = {MEASUREMENT_HEADER: [], VALUE_HEADER: []}

    # area
    append_to_dict("area [nm^2]", "area nm^2", "area nm^2 std")

    # perimeter
    append_to_dict("perimeter [nm]", "perimeter nm", "perimeter nm std")

    # diameter
    append_to_dict("diameter [nm]", "diameter nm", "diameter nm std")

    # height
    append_to_dict("height [nm]", "height nm", "height nm std")

    # number of layers
    append_to_dict("number of thylakoids", "Number of layers", "Number of layers std")

    # SRD
    append_to_dict("SRD [nm]", "period nm", "period nm std")

    # GSI
    append_to_dict("GSI", "GSI", "GSI std")

    # N grana
    aggregated_dict[MEASUREMENT_HEADER].append("number of grana")
    aggregated_dict[VALUE_HEADER].append(str(int(results_dict["N grana"])))

    return aggregated_dict


def rename_columns_in_results_table(results_table):
    column_names = {
        "Granum ID": "granum ID",
        "File name": "source image",
        "area nm^2": "area [nm^2]",
        "perimeter nm": "perimeter [nm]",
        "diameter nm": "diameter [nm]",
        "height nm": "height [nm]",
        "Number of layers": "number of thylakoids",
        "period nm": "SRD [nm]",
        "period SD nm": "SRD SD [nm]",
    }
    results_table = results_table.rename(columns=column_names)
    return results_table


with gr.Blocks(css=load_css(), theme=theme) as demo:

    svg = """
<svg id="Layer_1" data-name="Layer 1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 30.73 33.38">
  <defs>
    <style>
      .cls-1 {
        fill: #27b373;
        stroke-width: 0px;
      }
    </style>
  </defs>
  <path class="cls-1" d="M19.69,11.73h-3.22c-2.74,0-4.96,2.22-4.96,4.96h0c0,2.74,2.22,4.96,4.96,4.96h3.43c.56,0,1,.51.89,1.09-.08.43-.49.72-.92.72h-8.62c-.74,0-1.34-.6-1.34-1.34v-10.87c0-.74.6-1.34,1.34-1.34h13.44c2.73,0,4.95-2.22,4.95-4.95h0c0-2.75-2.22-4.97-4.96-4.97h-13.85C4.85,0,0,4.85,0,10.83v11.71c0,5.98,4.85,10.83,10.83,10.83h9.07c5.76,0,10.49-4.52,10.81-10.21.35-6.29-4.72-11.44-11.02-11.44ZM19.9,31.4h-9.07c-4.89,0-8.85-3.96-8.85-8.85v-11.71C1.98,5.95,5.95,1.98,10.83,1.98h13.81c1.64,0,2.97,1.33,2.97,2.97h0c0,1.65-1.33,2.97-2.96,2.97h-13.4c-1.83,0-3.32,1.49-3.32,3.32v10.87c0,1.83,1.49,3.32,3.32,3.32h8.56c1.51,0,2.83-1.12,2.97-2.62.16-1.72-1.2-3.16-2.88-3.16h-3.52c-1.64,0-2.97-1.33-2.97-2.97h0c0-1.64,1.33-2.97,2.97-2.97h3.34c4.83,0,8.9,3.81,9.01,8.64s-3.9,9.04-8.84,9.04Z"/>
  <path class="cls-1" d="M19.9,29.41h-9.07c-3.79,0-6.87-3.07-6.87-6.87v-11.71c0-3.79,3.07-6.87,6.87-6.87h13.81c.55,0,.99.44.99.99h0c0,.55-.44.99-.99.99h-13.81c-2.7,0-4.88,2.19-4.88,4.88v11.71c0,2.7,2.19,4.88,4.88,4.88h8.94c2.64,0,4.91-2.05,5-4.7s-2.12-5.05-4.87-5.05h-3.52c-.55,0-.99-.44-.99-.99h0c0-.55.44-.99.99-.99h3.36c3.74,0,6.9,2.92,7.01,6.66.11,3.87-3.01,7.06-6.85,7.06Z"/>
</svg>
"""

    gr.HTML(
        f'<div class="header"><div id="header-logo">{svg}</div><div id="header-text">GRANA<div></div>'
    )

    with gr.Row(elem_classes="input-row"):  # input
        with gr.Column():
            gr.HTML(
                "<h1>1. Choose images to upload. All the images need to be of the same scale and experimental variant.</h1>"
            )
            img_input = gr.File(file_count="multiple")

            gr.HTML("<h1>2. Set the scale of the images for the measurements.</h1>")
            with gr.Row():
                with gr.Column():
                    gr.HTML("Either provide pixel per nanometer ratio...")
                    ratio_input = gr.Number(
                        label="pixel per nm", precision=3, step=0.001
                    )

                with gr.Column():
                    gr.HTML("...or length of the scale bar in pixels and nanometers.")
                    pixels_input = gr.Number(label="Length in pixels")
                    nano_input = gr.Number(label="Length in nanometers")

                    pixels_input.change(
                        calc_ratio,
                        inputs=[pixels_input, nano_input],
                        outputs=ratio_input,
                    )
                    nano_input.change(
                        calc_ratio,
                        inputs=[pixels_input, nano_input],
                        outputs=ratio_input,
                    )

            with gr.Row():
                clear_btn = gr.ClearButton(img_input, "Clear")
                submit_btn = gr.Button("Submit", variant="primary")

    with gr.Row(visible=False) as loading_row:
        with gr.Column():
            gr.HTML(
                "<div class='processed-info'>Images are being processed. This may take a while...</div>"
            )

    with gr.Row(visible=False) as output_row:
        with gr.Column():
            gr.HTML(
                '<div class="results-header">Results</div>'
                "<p>Full results are a zip file containing:<p>"
                "<ul>- grana_raw_data.csv: a table with full grana measurements,</ul>"
                "<ul>- grana_aggregated_data.csv: a table with aggregated measurements,</ul>"
                '<ul>- directory "annotated_images" with all submitted images with masks on detected grana,</ul>'
                '<ul>- directory "single_grana_images" with images of all detected grana.</ul>'
                "<p>Note that GRANA only stores the result files for 1 hour.</p>",
                elem_classes="input-row",
            )
            with gr.Row(elem_classes="input-row"):
                download_file_out = gr.DownloadButton(
                    label="Download results",
                    variant="primary",
                    elem_classes="margin-bottom",
                )
            with gr.Row():
                gr.HTML(
                    '<h2 class="title">Annotated images</h2>'
                    "Gallery of uploaded images with masks of recognized grana structures. "
                    "Each granum mask is "
                    "labeled with its number. Note that only fully visible grana in the image are masked."
                )
            with gr.Row(elem_classes="margin-bottom"):
                gallery_out = gr.Gallery(
                    columns=4,
                    rows=2,
                    object_fit="contain",
                    label="Detection visualizations",
                    show_download_button=False,
                )

            with gr.Row(elem_classes="input-row"):
                gr.HTML(
                    '<h2 class="title">Aggregated results for all uploaded images</h2>'
                )
            with gr.Row(elem_classes=["input-row", "margin-bottom"]):
                table_out = gr.Dataframe(label="Aggregated data")

            with gr.Row():
                gr.HTML(
                    '<h2 class="title">Violin graphs</h2>'
                    "These graphs present aggregated results for selected structural parameters. "
                    "The graph for each parameter is only generated if three or more values are available. "
                    "Each graph "
                    "displays individual data points, a box plot indicating the first and third quartiles, whiskers "
                    "marking the standard deviation (SD), the median value (horizontal line on the box plot), "
                    "the mean value (red dot), and a density plot where the width represents the frequency."
                )

            with gr.Row():
                area_plot_out = gr.Plot(label="Area")
                perimeter_plot_out = gr.Plot(label="Perimeter")
                gsi_plot_out = gr.Plot(label="GSI")

            with gr.Row(elem_classes="margin-bottom"):
                diameter_plot_out = gr.Plot(label="Diameter")
                height_plot_out = gr.Plot(label="Height")
                srd_plot_out = gr.Plot(label="SRD")

            with gr.Row():
                gr.HTML(
                    '<h2 class="title">Recognized and rotated grana structures</h2>'
                )

            with gr.Row(elem_classes="margin-bottom"):
                gallery_single_grana_out = gr.Gallery(
                    columns=4,
                    rows=2,
                    object_fit="contain",
                    label="Single grana images",
                    show_download_button=False,
                )

            with gr.Row():
                gr.HTML(
                    '<h2 class="title">Full results</h2>'
                    "Note that structural parameters other than area and perimeter are only calculated for the grana "
                    "whose direction and/or SRD could be estimated."
                )
            with gr.Row():
                table_full_out = gr.Dataframe(label="Full measurements data")

    submit_btn.click(
        show_info_on_submit,
        inputs=[submit_btn],
        outputs=[submit_btn, clear_btn, loading_row, output_row],
    )

    def enable_submit():
        return (
            gr.Button(interactive=True),
            gr.Button(interactive=True),
            gr.Row(visible=False),
        )

    def gradio_analize_image(images, scale):
        """
        Model accepts following parameters:
        :param images: list of images to be processed, in either tiff or png format
        :param scale: float, nm to pixel ratio

        Model returns the following objects:
        - detection_visualizations: list of images with masks to be displayed as gallery and served to download
        as zip of images
        - grana_data: dataframe with measurements for each image to be served to download as a csv file
        - images_grana: list of images with single grana to be served to download as zip of images
        - aggregated_data: dataframe with aggregated measurements for all images to be displayed as table and served
        to download as csv
        """

        # validate that at least one image has been uploaded
        if images is None or len(images) == 0:
            raise gr.Error("Please upload at least one image")

        # on demo instance, we limit the number of images to 5
        if DEMO:
            if len(images) > 5:
                raise gr.Error("In demo version it is possible to analyze up to 5 images.")

        # validate that scale has been provided correctly
        if scale is None or scale == 0:
            raise gr.Error("Please provide scale. Use dot as decimal separator")

        # validate that all images are png or tiff
        for image in images:
            if not image.name.lower().endswith((".png", ".tif", ".jpg", ".jpeg")):
                raise gr.Error("Only png, tiff, jpg ang jpeg images are supported")

        # clean up previous results
        # find all directories in current working directory that start with "results_"
        # that were created more than 1 hour ago and delete them with all contents
        for directory_name in os.listdir():
            if directory_name.startswith("results_"):
                dir_path = os.path.join(os.getcwd(), directory_name)
                if os.path.isdir(dir_path):
                    if time.time() - os.path.getctime(dir_path) > 60 * 60:
                        shutil.rmtree(dir_path)

        # create a directory for results
        results_dir_name = "results_{uuid}".format(uuid=uuid.uuid4().hex)
        os.makedirs(results_dir_name)
        zip_dir_name = f"{results_dir_name}/to_zip"
        os.makedirs(zip_dir_name)

        # model takes a dict of images, so we need to convert input to list of PIL.PngImagePlugin.PngImageFile or
        # PIL.TiffImagePlugin.TiffImageFile objects
        images_dict = {
            image.name.split("/")[-1]: Image.open(image.name)
            for i, image in enumerate(images)
        }

        # model works here
        (
            detection_visualizations_dict,
            grana_data,
            images_grana_dict,
            aggregated_data,
        ) = ga.predict(images_dict, scale)
        detection_visualizations = list(detection_visualizations_dict.values())
        images_grana = list(images_grana_dict.values())

        # rearrange aggregated data to be displayed as table
        aggregated_dict = transform_aggregated_results_table(aggregated_data)
        aggregated_df_transposed = pd.DataFrame.from_dict(aggregated_dict)

        # rename columns in full results
        grana_data = rename_columns_in_results_table(grana_data)

        # save files returned by model to disk so they can be retrieved for downloading
        download_file_path = prepare_files_for_download(
            results_dir_name,
            grana_data,
            aggregated_df_transposed,
            detection_visualizations_dict,
            images_grana_dict,
        )

        # generate plot
        area_fig = draw_violin_plot(
            grana_data["area [nm^2]"].dropna(),
            "Granum area [nm^2]",
            "Grana areas from all uploaded images",
        )
        perimeter_fig = draw_violin_plot(
            grana_data["perimeter [nm]"].dropna(),
            "Granum perimeter [nm]",
            "Grana perimeters from all uploaded images",
        )
        gsi_fig = draw_violin_plot(
            grana_data["GSI"].dropna(),
            "GSI",
            "GSI from all uploaded images",
        )
        diameter_fig = draw_violin_plot(
            grana_data["diameter [nm]"].dropna(),
            "Granum diameter [nm]",
            "Grana diameters from all uploaded images",
        )
        height_fig = draw_violin_plot(
            grana_data["height [nm]"].dropna(),
            "Granum height [nm]",
            "Grana heights from all uploaded images",
        )
        srd_fig = draw_violin_plot(
            grana_data["SRD [nm]"].dropna(), "SRD [nm]", "SRD from all uploaded images"
        )

        return [
            gr.Row(visible=True),
            gr.Row(visible=True),
            download_file_path,
            detection_visualizations,
            aggregated_df_transposed,
            area_fig,
            perimeter_fig,
            gsi_fig,
            diameter_fig,
            height_fig,
            srd_fig,
            images_grana,
            grana_data,
        ]

    submit_btn.click(
        fn=gradio_analize_image,
        inputs=[
            img_input,
            ratio_input,
        ],
        outputs=[
            loading_row,
            output_row,
            # file_download_checkboxes,
            download_file_out,
            gallery_out,
            table_out,
            area_plot_out,
            perimeter_plot_out,
            gsi_plot_out,
            diameter_plot_out,
            height_plot_out,
            srd_plot_out,
            gallery_single_grana_out,
            table_full_out,
        ],
    ).then(fn=enable_submit, inputs=[], outputs=[submit_btn, clear_btn, loading_row])

demo.launch(
    share=False, debug=True, server_name="0.0.0.0", allowed_paths=["images/logo.svg"]
)