Spaces:
Runtime error
Runtime error
File size: 21,542 Bytes
8948e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
import os
import shutil
import time
import uuid
from datetime import datetime
from decimal import Decimal
import gradio as gr
import matplotlib.pyplot as plt
from settings import DEMO
plt.switch_backend("agg") # fix for "RuntimeError: main thread is not in main loop"
import numpy as np
import pandas as pd
from PIL import Image
from model import GranaAnalyser
ga = GranaAnalyser(
"weights/yolo/20240604_yolov8_segm_ABRCR1_all_train4_best.pt",
"weights/AS_square_v16.ckpt",
"weights/period_measurer_weights-1.298_real_full-fa12970.ckpt",
)
def calc_ratio(pixels, nano):
"""
Calculates ratio of pixels to nanometers and returns as str to populate ratio_input
:param pixels:
:param nano:
:return:
"""
if not (pixels and nano):
pass
else:
res = pixels / nano
return res
# https://jakevdp.github.io/PythonDataScienceHandbook/05.13-kernel-density-estimation.html
def KDE(dataset, h):
# the Kernel function
def K(x):
return np.exp(-(x ** 2) / 2) / np.sqrt(2 * np.pi)
n_samples = dataset.size
x_range = dataset # x-value range for plotting KDEs
total_sum = 0
# iterate over datapoints
for i, xi in enumerate(dataset):
total_sum += K((x_range - xi) / h)
y_range = total_sum / (h * n_samples)
return y_range
def prepare_files_for_download(
dir_name,
grana_data,
aggregated_data,
detection_visualizations_dict,
images_grana_dict,
):
"""
Save and zip files for download
:param dir_name:
:param grana_data: DataFrame containing all grana measurements
:param aggregated_data: dict containing aggregated measurements
:return:
"""
dir_to_zip = f"{dir_name}/to_zip"
# raw data
grana_data_csv_path = f"{dir_to_zip}/grana_raw_data.csv"
grana_data.to_csv(grana_data_csv_path, index=False)
# aggregated measurements
aggregated_csv_path = f"{dir_to_zip}/grana_aggregated_data.csv"
aggregated_data.to_csv(aggregated_csv_path)
# annotated pictures
masked_images_dir = f"{dir_to_zip}/annotated_images"
os.makedirs(masked_images_dir)
for img_name, img in detection_visualizations_dict.items():
filename_split = img_name.split(".")
extension = filename_split[-1]
filename = ".".join(filename_split[:-1])
filename = f"{filename}_annotated.{extension}"
img.save(f"{masked_images_dir}/{filename}")
# single_grana images
grana_images_dir = f"{dir_to_zip}/single_grana_images"
os.makedirs(grana_images_dir)
org_images_dict = pd.Series(
grana_data["source image"].values, index=grana_data["granum ID"]
).to_dict()
for img_name, img in images_grana_dict.items():
org_filename = org_images_dict[img_name]
org_filename_split = org_filename.split(".")
org_filename_no_ext = ".".join(org_filename_split[:-1])
img_name_ext = f"{org_filename_no_ext}_granum_{str(img_name)}.png"
img.save(f"{grana_images_dir}/{img_name_ext}")
# zip all files
date_str = datetime.today().strftime("%Y-%m-%d")
zip_name = f"GRANA_results_{date_str}"
zip_path = f"{dir_name}/{zip_name}"
shutil.make_archive(zip_path, "zip", dir_to_zip)
# delete to_zip dir
zip_dir_path = os.path.join(os.getcwd(), dir_to_zip)
shutil.rmtree(zip_dir_path)
download_file_path = f"{zip_path}.zip"
return download_file_path
def show_info_on_submit(s):
return (
gr.Button(interactive=False),
gr.Button(interactive=False),
gr.Row(visible=True),
gr.Row(visible=False),
)
def load_css():
with open("styles.css", "r") as f:
css_content = f.read()
return css_content
primary_hue = gr.themes.Color(
c50="#e1f8ee",
c100="#b7efd5",
c200="#8de6bd",
c300="#63dda5",
c400="#39d48d",
c500="#27b373",
c600="#1e8958",
c700="#155f3d",
c800="#0c3522",
c900="#030b07",
c950="#000",
)
theme = gr.themes.Default(
primary_hue=primary_hue,
font=[gr.themes.GoogleFont("Ubuntu"), "ui-sans-serif", "system-ui", "sans-serif"],
)
def draw_violin_plot(y, ylabel, title):
# only generate plot for 3 or more values
if y.count() < 3:
return None
# Colors
RED_DARK = "#850e00"
DARK_GREEN = "#0c3522"
BRIGHT_GREEN = "#8de6bd"
# Create jittered version of "x" (which is only 1)
x_jittered = []
kde = KDE(y, (y.max() - y.min()) / y.size / 2)
kde = kde / kde.max() * 0.2
for y_val in kde:
x_jittered.append(1 + np.random.uniform(-y_val, y_val, 1))
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.scatter(x=x_jittered, y=y, s=20, alpha=0.4, c=DARK_GREEN)
violins = ax.violinplot(
y,
widths=0.45,
bw_method="silverman",
showmeans=False,
showmedians=False,
showextrema=False,
)
# change violin color
for pc in violins["bodies"]:
pc.set_facecolor(BRIGHT_GREEN)
# add a boxplot to ax
# but make the whiskers length equal to 1 SD, i.e. in the proportion of the IQ range, but this length should start from the mean but be visible from the box boundary
lower = np.mean(y) - 1 * np.std(y)
upper = np.mean(y) + 1 * np.std(y)
medianprops = dict(linewidth=1, color="black", solid_capstyle="butt")
boxplot_stats = [
{
"med": np.median(y),
"q1": np.percentile(y, 25),
"q3": np.percentile(y, 75),
"whislo": lower,
"whishi": upper,
}
]
ax.bxp(
boxplot_stats, # data for the boxplot
showfliers=False, # do not show the outliers beyond the caps.
showcaps=True, # show the caps
medianprops=medianprops,
)
# Add mean value point
ax.scatter(1, y.mean(), s=30, color=RED_DARK, zorder=3)
ax.set_xticks([])
ax.set_ylabel(ylabel)
ax.set_title(title)
fig.tight_layout()
return fig
def transform_aggregated_results_table(results_dict):
MEASUREMENT_HEADER = "measurement [unit]"
VALUE_HEADER = "value +-SD"
def get_value_str(value, std):
if np.isnan(value) or np.isnan(std):
return "-"
value_str = str(Decimal(str(value)).quantize(Decimal("0.01")))
std_str = str(Decimal(str(std)).quantize(Decimal("0.01")))
return f"{value_str} +-{std_str}"
def append_to_dict(new_key, old_val_key, old_sd_key):
aggregated_dict[MEASUREMENT_HEADER].append(new_key)
value_str = get_value_str(results_dict[old_val_key], results_dict[old_sd_key])
aggregated_dict[VALUE_HEADER].append(value_str)
aggregated_dict = {MEASUREMENT_HEADER: [], VALUE_HEADER: []}
# area
append_to_dict("area [nm^2]", "area nm^2", "area nm^2 std")
# perimeter
append_to_dict("perimeter [nm]", "perimeter nm", "perimeter nm std")
# diameter
append_to_dict("diameter [nm]", "diameter nm", "diameter nm std")
# height
append_to_dict("height [nm]", "height nm", "height nm std")
# number of layers
append_to_dict("number of thylakoids", "Number of layers", "Number of layers std")
# SRD
append_to_dict("SRD [nm]", "period nm", "period nm std")
# GSI
append_to_dict("GSI", "GSI", "GSI std")
# N grana
aggregated_dict[MEASUREMENT_HEADER].append("number of grana")
aggregated_dict[VALUE_HEADER].append(str(int(results_dict["N grana"])))
return aggregated_dict
def rename_columns_in_results_table(results_table):
column_names = {
"Granum ID": "granum ID",
"File name": "source image",
"area nm^2": "area [nm^2]",
"perimeter nm": "perimeter [nm]",
"diameter nm": "diameter [nm]",
"height nm": "height [nm]",
"Number of layers": "number of thylakoids",
"period nm": "SRD [nm]",
"period SD nm": "SRD SD [nm]",
}
results_table = results_table.rename(columns=column_names)
return results_table
with gr.Blocks(css=load_css(), theme=theme) as demo:
svg = """
<svg id="Layer_1" data-name="Layer 1" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 30.73 33.38">
<defs>
<style>
.cls-1 {
fill: #27b373;
stroke-width: 0px;
}
</style>
</defs>
<path class="cls-1" d="M19.69,11.73h-3.22c-2.74,0-4.96,2.22-4.96,4.96h0c0,2.74,2.22,4.96,4.96,4.96h3.43c.56,0,1,.51.89,1.09-.08.43-.49.72-.92.72h-8.62c-.74,0-1.34-.6-1.34-1.34v-10.87c0-.74.6-1.34,1.34-1.34h13.44c2.73,0,4.95-2.22,4.95-4.95h0c0-2.75-2.22-4.97-4.96-4.97h-13.85C4.85,0,0,4.85,0,10.83v11.71c0,5.98,4.85,10.83,10.83,10.83h9.07c5.76,0,10.49-4.52,10.81-10.21.35-6.29-4.72-11.44-11.02-11.44ZM19.9,31.4h-9.07c-4.89,0-8.85-3.96-8.85-8.85v-11.71C1.98,5.95,5.95,1.98,10.83,1.98h13.81c1.64,0,2.97,1.33,2.97,2.97h0c0,1.65-1.33,2.97-2.96,2.97h-13.4c-1.83,0-3.32,1.49-3.32,3.32v10.87c0,1.83,1.49,3.32,3.32,3.32h8.56c1.51,0,2.83-1.12,2.97-2.62.16-1.72-1.2-3.16-2.88-3.16h-3.52c-1.64,0-2.97-1.33-2.97-2.97h0c0-1.64,1.33-2.97,2.97-2.97h3.34c4.83,0,8.9,3.81,9.01,8.64s-3.9,9.04-8.84,9.04Z"/>
<path class="cls-1" d="M19.9,29.41h-9.07c-3.79,0-6.87-3.07-6.87-6.87v-11.71c0-3.79,3.07-6.87,6.87-6.87h13.81c.55,0,.99.44.99.99h0c0,.55-.44.99-.99.99h-13.81c-2.7,0-4.88,2.19-4.88,4.88v11.71c0,2.7,2.19,4.88,4.88,4.88h8.94c2.64,0,4.91-2.05,5-4.7s-2.12-5.05-4.87-5.05h-3.52c-.55,0-.99-.44-.99-.99h0c0-.55.44-.99.99-.99h3.36c3.74,0,6.9,2.92,7.01,6.66.11,3.87-3.01,7.06-6.85,7.06Z"/>
</svg>
"""
gr.HTML(
f'<div class="header"><div id="header-logo">{svg}</div><div id="header-text">GRANA<div></div>'
)
with gr.Row(elem_classes="input-row"): # input
with gr.Column():
gr.HTML(
"<h1>1. Choose images to upload. All the images need to be of the same scale and experimental variant.</h1>"
)
img_input = gr.File(file_count="multiple")
gr.HTML("<h1>2. Set the scale of the images for the measurements.</h1>")
with gr.Row():
with gr.Column():
gr.HTML("Either provide pixel per nanometer ratio...")
ratio_input = gr.Number(
label="pixel per nm", precision=3, step=0.001
)
with gr.Column():
gr.HTML("...or length of the scale bar in pixels and nanometers.")
pixels_input = gr.Number(label="Length in pixels")
nano_input = gr.Number(label="Length in nanometers")
pixels_input.change(
calc_ratio,
inputs=[pixels_input, nano_input],
outputs=ratio_input,
)
nano_input.change(
calc_ratio,
inputs=[pixels_input, nano_input],
outputs=ratio_input,
)
with gr.Row():
clear_btn = gr.ClearButton(img_input, "Clear")
submit_btn = gr.Button("Submit", variant="primary")
with gr.Row(visible=False) as loading_row:
with gr.Column():
gr.HTML(
"<div class='processed-info'>Images are being processed. This may take a while...</div>"
)
with gr.Row(visible=False) as output_row:
with gr.Column():
gr.HTML(
'<div class="results-header">Results</div>'
"<p>Full results are a zip file containing:<p>"
"<ul>- grana_raw_data.csv: a table with full grana measurements,</ul>"
"<ul>- grana_aggregated_data.csv: a table with aggregated measurements,</ul>"
'<ul>- directory "annotated_images" with all submitted images with masks on detected grana,</ul>'
'<ul>- directory "single_grana_images" with images of all detected grana.</ul>'
"<p>Note that GRANA only stores the result files for 1 hour.</p>",
elem_classes="input-row",
)
with gr.Row(elem_classes="input-row"):
download_file_out = gr.DownloadButton(
label="Download results",
variant="primary",
elem_classes="margin-bottom",
)
with gr.Row():
gr.HTML(
'<h2 class="title">Annotated images</h2>'
"Gallery of uploaded images with masks of recognized grana structures. "
"Each granum mask is "
"labeled with its number. Note that only fully visible grana in the image are masked."
)
with gr.Row(elem_classes="margin-bottom"):
gallery_out = gr.Gallery(
columns=4,
rows=2,
object_fit="contain",
label="Detection visualizations",
show_download_button=False,
)
with gr.Row(elem_classes="input-row"):
gr.HTML(
'<h2 class="title">Aggregated results for all uploaded images</h2>'
)
with gr.Row(elem_classes=["input-row", "margin-bottom"]):
table_out = gr.Dataframe(label="Aggregated data")
with gr.Row():
gr.HTML(
'<h2 class="title">Violin graphs</h2>'
"These graphs present aggregated results for selected structural parameters. "
"The graph for each parameter is only generated if three or more values are available. "
"Each graph "
"displays individual data points, a box plot indicating the first and third quartiles, whiskers "
"marking the standard deviation (SD), the median value (horizontal line on the box plot), "
"the mean value (red dot), and a density plot where the width represents the frequency."
)
with gr.Row():
area_plot_out = gr.Plot(label="Area")
perimeter_plot_out = gr.Plot(label="Perimeter")
gsi_plot_out = gr.Plot(label="GSI")
with gr.Row(elem_classes="margin-bottom"):
diameter_plot_out = gr.Plot(label="Diameter")
height_plot_out = gr.Plot(label="Height")
srd_plot_out = gr.Plot(label="SRD")
with gr.Row():
gr.HTML(
'<h2 class="title">Recognized and rotated grana structures</h2>'
)
with gr.Row(elem_classes="margin-bottom"):
gallery_single_grana_out = gr.Gallery(
columns=4,
rows=2,
object_fit="contain",
label="Single grana images",
show_download_button=False,
)
with gr.Row():
gr.HTML(
'<h2 class="title">Full results</h2>'
"Note that structural parameters other than area and perimeter are only calculated for the grana "
"whose direction and/or SRD could be estimated."
)
with gr.Row():
table_full_out = gr.Dataframe(label="Full measurements data")
submit_btn.click(
show_info_on_submit,
inputs=[submit_btn],
outputs=[submit_btn, clear_btn, loading_row, output_row],
)
def enable_submit():
return (
gr.Button(interactive=True),
gr.Button(interactive=True),
gr.Row(visible=False),
)
def gradio_analize_image(images, scale):
"""
Model accepts following parameters:
:param images: list of images to be processed, in either tiff or png format
:param scale: float, nm to pixel ratio
Model returns the following objects:
- detection_visualizations: list of images with masks to be displayed as gallery and served to download
as zip of images
- grana_data: dataframe with measurements for each image to be served to download as a csv file
- images_grana: list of images with single grana to be served to download as zip of images
- aggregated_data: dataframe with aggregated measurements for all images to be displayed as table and served
to download as csv
"""
# validate that at least one image has been uploaded
if images is None or len(images) == 0:
raise gr.Error("Please upload at least one image")
# on demo instance, we limit the number of images to 5
if DEMO:
if len(images) > 5:
raise gr.Error("In demo version it is possible to analyze up to 5 images.")
# validate that scale has been provided correctly
if scale is None or scale == 0:
raise gr.Error("Please provide scale. Use dot as decimal separator")
# validate that all images are png or tiff
for image in images:
if not image.name.lower().endswith((".png", ".tif", ".jpg", ".jpeg")):
raise gr.Error("Only png, tiff, jpg ang jpeg images are supported")
# clean up previous results
# find all directories in current working directory that start with "results_"
# that were created more than 1 hour ago and delete them with all contents
for directory_name in os.listdir():
if directory_name.startswith("results_"):
dir_path = os.path.join(os.getcwd(), directory_name)
if os.path.isdir(dir_path):
if time.time() - os.path.getctime(dir_path) > 60 * 60:
shutil.rmtree(dir_path)
# create a directory for results
results_dir_name = "results_{uuid}".format(uuid=uuid.uuid4().hex)
os.makedirs(results_dir_name)
zip_dir_name = f"{results_dir_name}/to_zip"
os.makedirs(zip_dir_name)
# model takes a dict of images, so we need to convert input to list of PIL.PngImagePlugin.PngImageFile or
# PIL.TiffImagePlugin.TiffImageFile objects
images_dict = {
image.name.split("/")[-1]: Image.open(image.name)
for i, image in enumerate(images)
}
# model works here
(
detection_visualizations_dict,
grana_data,
images_grana_dict,
aggregated_data,
) = ga.predict(images_dict, scale)
detection_visualizations = list(detection_visualizations_dict.values())
images_grana = list(images_grana_dict.values())
# rearrange aggregated data to be displayed as table
aggregated_dict = transform_aggregated_results_table(aggregated_data)
aggregated_df_transposed = pd.DataFrame.from_dict(aggregated_dict)
# rename columns in full results
grana_data = rename_columns_in_results_table(grana_data)
# save files returned by model to disk so they can be retrieved for downloading
download_file_path = prepare_files_for_download(
results_dir_name,
grana_data,
aggregated_df_transposed,
detection_visualizations_dict,
images_grana_dict,
)
# generate plot
area_fig = draw_violin_plot(
grana_data["area [nm^2]"].dropna(),
"Granum area [nm^2]",
"Grana areas from all uploaded images",
)
perimeter_fig = draw_violin_plot(
grana_data["perimeter [nm]"].dropna(),
"Granum perimeter [nm]",
"Grana perimeters from all uploaded images",
)
gsi_fig = draw_violin_plot(
grana_data["GSI"].dropna(),
"GSI",
"GSI from all uploaded images",
)
diameter_fig = draw_violin_plot(
grana_data["diameter [nm]"].dropna(),
"Granum diameter [nm]",
"Grana diameters from all uploaded images",
)
height_fig = draw_violin_plot(
grana_data["height [nm]"].dropna(),
"Granum height [nm]",
"Grana heights from all uploaded images",
)
srd_fig = draw_violin_plot(
grana_data["SRD [nm]"].dropna(), "SRD [nm]", "SRD from all uploaded images"
)
return [
gr.Row(visible=True),
gr.Row(visible=True),
download_file_path,
detection_visualizations,
aggregated_df_transposed,
area_fig,
perimeter_fig,
gsi_fig,
diameter_fig,
height_fig,
srd_fig,
images_grana,
grana_data,
]
submit_btn.click(
fn=gradio_analize_image,
inputs=[
img_input,
ratio_input,
],
outputs=[
loading_row,
output_row,
# file_download_checkboxes,
download_file_out,
gallery_out,
table_out,
area_plot_out,
perimeter_plot_out,
gsi_plot_out,
diameter_plot_out,
height_plot_out,
srd_plot_out,
gallery_single_grana_out,
table_full_out,
],
).then(fn=enable_submit, inputs=[], outputs=[submit_btn, clear_btn, loading_row])
demo.launch(
share=False, debug=True, server_name="0.0.0.0", allowed_paths=["images/logo.svg"]
)
|