virtual_character2 / src /vid2vid.py
zejunyang
init
2de857a
raw
history blame
7.9 kB
import os
import shutil
import ffmpeg
from datetime import datetime
from pathlib import Path
import numpy as np
import cv2
import torch
import spaces
# from diffusers import AutoencoderKL, DDIMScheduler
# from einops import repeat
# from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
# from transformers import CLIPVisionModelWithProjection
# from src.models.pose_guider import PoseGuider
# from src.models.unet_2d_condition import UNet2DConditionModel
# from src.models.unet_3d import UNet3DConditionModel
# from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
from src.utils.util import get_fps, read_frames, save_videos_grid
# from src.utils.mp_utils import LMKExtractor
# from src.utils.draw_util import FaceMeshVisualizer
from src.utils.pose_util import project_points_with_trans, matrix_to_euler_and_translation, euler_and_translation_to_matrix
from src.audio2vid import smooth_pose_seq
from src.utils.crop_face_single import crop_face
from src.create_modules import lmk_extractor, vis, pipe
@spaces.GPU
def video2video(ref_img, source_video, size=512, steps=25, length=150, seed=42):
cfg = 3.5
# config = OmegaConf.load('./configs/prompts/animation_facereenac.yaml')
# if config.weight_dtype == "fp16":
# weight_dtype = torch.float16
# else:
# weight_dtype = torch.float32
# vae = AutoencoderKL.from_pretrained(
# config.pretrained_vae_path,
# ).to("cuda", dtype=weight_dtype)
# reference_unet = UNet2DConditionModel.from_pretrained(
# config.pretrained_base_model_path,
# subfolder="unet",
# ).to(dtype=weight_dtype, device="cuda")
# inference_config_path = config.inference_config
# infer_config = OmegaConf.load(inference_config_path)
# denoising_unet = UNet3DConditionModel.from_pretrained_2d(
# config.pretrained_base_model_path,
# config.motion_module_path,
# subfolder="unet",
# unet_additional_kwargs=infer_config.unet_additional_kwargs,
# ).to(dtype=weight_dtype, device="cuda")
# pose_guider = PoseGuider(noise_latent_channels=320, use_ca=True).to(device="cuda", dtype=weight_dtype) # not use cross attention
# image_enc = CLIPVisionModelWithProjection.from_pretrained(
# config.image_encoder_path
# ).to(dtype=weight_dtype, device="cuda")
# sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
# scheduler = DDIMScheduler(**sched_kwargs)
generator = torch.manual_seed(seed)
width, height = size, size
# # load pretrained weights
# denoising_unet.load_state_dict(
# torch.load(config.denoising_unet_path, map_location="cpu"),
# strict=False,
# )
# reference_unet.load_state_dict(
# torch.load(config.reference_unet_path, map_location="cpu"),
# )
# pose_guider.load_state_dict(
# torch.load(config.pose_guider_path, map_location="cpu"),
# )
# pipe = Pose2VideoPipeline(
# vae=vae,
# image_encoder=image_enc,
# reference_unet=reference_unet,
# denoising_unet=denoising_unet,
# pose_guider=pose_guider,
# scheduler=scheduler,
# )
# pipe = pipe.to("cuda", dtype=weight_dtype)
date_str = datetime.now().strftime("%Y%m%d")
time_str = datetime.now().strftime("%H%M")
save_dir_name = f"{time_str}--seed_{seed}-{size}x{size}"
save_dir = Path(f"output/{date_str}/{save_dir_name}")
save_dir.mkdir(exist_ok=True, parents=True)
# lmk_extractor = LMKExtractor()
# vis = FaceMeshVisualizer(forehead_edge=False)
ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
ref_image_np = crop_face(ref_image_np, lmk_extractor)
if ref_image_np is None:
return None, Image.fromarray(ref_img)
ref_image_np = cv2.resize(ref_image_np, (size, size))
ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB))
face_result = lmk_extractor(ref_image_np)
if face_result is None:
return None, ref_image_pil
lmks = face_result['lmks'].astype(np.float32)
ref_pose = vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True)
source_images = read_frames(source_video)
src_fps = get_fps(source_video)
pose_transform = transforms.Compose(
[transforms.Resize((height, width)), transforms.ToTensor()]
)
step = 1
if src_fps == 60:
src_fps = 30
step = 2
pose_trans_list = []
verts_list = []
bs_list = []
src_tensor_list = []
args_L = len(source_images) if length==0 or length*step > len(source_images) else length*step
args_L = min(args_L, 300*step)
for src_image_pil in source_images[: args_L: step]:
src_tensor_list.append(pose_transform(src_image_pil))
src_img_np = cv2.cvtColor(np.array(src_image_pil), cv2.COLOR_RGB2BGR)
frame_height, frame_width, _ = src_img_np.shape
src_img_result = lmk_extractor(src_img_np)
if src_img_result is None:
break
pose_trans_list.append(src_img_result['trans_mat'])
verts_list.append(src_img_result['lmks3d'])
bs_list.append(src_img_result['bs'])
# pose_arr = np.array(pose_trans_list)
trans_mat_arr = np.array(pose_trans_list)
verts_arr = np.array(verts_list)
bs_arr = np.array(bs_list)
min_bs_idx = np.argmin(bs_arr.sum(1))
# compute delta pose
pose_arr = np.zeros([trans_mat_arr.shape[0], 6])
for i in range(pose_arr.shape[0]):
euler_angles, translation_vector = matrix_to_euler_and_translation(trans_mat_arr[i]) # real pose of source
pose_arr[i, :3] = euler_angles
pose_arr[i, 3:6] = translation_vector
init_tran_vec = face_result['trans_mat'][:3, 3] # init translation of tgt
pose_arr[:, 3:6] = pose_arr[:, 3:6] - pose_arr[0, 3:6] + init_tran_vec # (relative translation of source) + (init translation of tgt)
pose_arr_smooth = smooth_pose_seq(pose_arr, window_size=3)
pose_mat_smooth = [euler_and_translation_to_matrix(pose_arr_smooth[i][:3], pose_arr_smooth[i][3:6]) for i in range(pose_arr_smooth.shape[0])]
pose_mat_smooth = np.array(pose_mat_smooth)
# face retarget
verts_arr = verts_arr - verts_arr[min_bs_idx] + face_result['lmks3d']
# project 3D mesh to 2D landmark
projected_vertices = project_points_with_trans(verts_arr, pose_mat_smooth, [frame_height, frame_width])
pose_list = []
for i, verts in enumerate(projected_vertices):
lmk_img = vis.draw_landmarks((frame_width, frame_height), verts, normed=False)
pose_image_np = cv2.resize(lmk_img, (width, height))
pose_list.append(pose_image_np)
pose_list = np.array(pose_list)
video_length = len(pose_list)
video = pipe(
ref_image_pil,
pose_list,
ref_pose,
width,
height,
video_length,
steps,
cfg,
generator=generator,
).videos
save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio.mp4"
save_videos_grid(
video,
save_path,
n_rows=1,
fps=src_fps,
)
audio_output = f'{save_dir}/audio_from_video.aac'
# extract audio
try:
ffmpeg.input(source_video).output(audio_output, acodec='copy').run()
# merge audio and video
stream = ffmpeg.input(save_path)
audio = ffmpeg.input(audio_output)
ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run()
os.remove(save_path)
os.remove(audio_output)
except:
shutil.move(
save_path,
save_path.replace('_noaudio.mp4', '.mp4')
)
return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil