Spaces:
Runtime error
Runtime error
zejunyang
commited on
Commit
·
2de857a
1
Parent(s):
bf4c058
init
Browse files- app.py +50 -46
- src/audio2vid.py +73 -67
- src/utils/crop_face_single.py +45 -0
- src/vid2vid.py +69 -67
app.py
CHANGED
@@ -17,68 +17,72 @@ with gr.Blocks() as demo:
|
|
17 |
gr.Markdown(description)
|
18 |
|
19 |
with gr.Tab("Audio2video"):
|
20 |
-
with gr.
|
21 |
-
with gr.
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
a2v_ref_img = gr.Image(label="Upload reference image", sources="upload")
|
27 |
-
a2v_headpose_video = gr.Video(label="Option: upload head pose reference video", sources="upload")
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
a2v_output_video = gr.PlayableVideo(label="Result", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
with gr.Tab("Video2video"):
|
42 |
-
|
43 |
-
with gr.
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
v2v_botton = gr.Button("Generate", variant="primary")
|
59 |
v2v_output_video = gr.PlayableVideo(label="Result", interactive=False)
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
a2v_botton.click(
|
62 |
fn=audio2video,
|
63 |
inputs=[a2v_input_audio, a2v_ref_img, a2v_headpose_video,
|
64 |
a2v_size_slider, a2v_step_slider, a2v_length, a2v_seed],
|
65 |
-
outputs=[a2v_output_video]
|
66 |
)
|
67 |
-
# a2v_img_trans_real_botton.click(
|
68 |
-
# fn=sd_img2real,
|
69 |
-
# inputs=[a2v_ref_img],
|
70 |
-
# outputs=[a2v_ref_img]
|
71 |
-
# )
|
72 |
v2v_botton.click(
|
73 |
fn=video2video,
|
74 |
inputs=[v2v_ref_img, v2v_source_video,
|
75 |
v2v_size_slider, v2v_step_slider, v2v_length, v2v_seed],
|
76 |
-
outputs=[v2v_output_video]
|
77 |
)
|
78 |
-
# v2v_img_trans_real_botton.click(
|
79 |
-
# fn=sd_img2real,
|
80 |
-
# inputs=[v2v_ref_img],
|
81 |
-
# outputs=[v2v_ref_img]
|
82 |
-
# )
|
83 |
|
84 |
demo.launch()
|
|
|
17 |
gr.Markdown(description)
|
18 |
|
19 |
with gr.Tab("Audio2video"):
|
20 |
+
with gr.Row():
|
21 |
+
with gr.Column():
|
22 |
+
with gr.Row():
|
23 |
+
a2v_input_audio = gr.Audio(sources=["upload", "microphone"], type="filepath", editable=True, label="Input audio", interactive=True)
|
24 |
+
a2v_ref_img = gr.Image(label="Upload reference image", sources="upload")
|
25 |
+
a2v_headpose_video = gr.Video(label="Option: upload head pose reference video", sources="upload")
|
|
|
|
|
26 |
|
27 |
+
with gr.Row():
|
28 |
+
a2v_size_slider = gr.Slider(minimum=256, maximum=1024, step=8, value=512, label="Video size (-W & -H)")
|
29 |
+
a2v_step_slider = gr.Slider(minimum=5, maximum=50, step=1, value=20, label="Steps (--steps)")
|
30 |
+
|
31 |
+
with gr.Row():
|
32 |
+
a2v_length = gr.Slider(minimum=0, maximum=300, step=1, value=150, label="Length (-L) (Set 0 to automatically calculate video length.)")
|
33 |
+
a2v_seed = gr.Number(value=42, label="Seed (--seed)")
|
34 |
+
|
35 |
+
a2v_botton = gr.Button("Generate", variant="primary")
|
36 |
a2v_output_video = gr.PlayableVideo(label="Result", interactive=False)
|
37 |
+
|
38 |
+
gr.Examples(
|
39 |
+
examples=[
|
40 |
+
["configs/inference/audio/lyl.wav", "configs/inference/ref_images/Aragaki.png", None],
|
41 |
+
["configs/inference/audio/lyl.wav", "configs/inference/ref_images/solo.png", None],
|
42 |
+
["configs/inference/audio/lyl.wav", "configs/inference/ref_images/lyl.png", "configs/inference/head_pose_temp/pose_ref_video.mp4"],
|
43 |
+
],
|
44 |
+
inputs=[a2v_input_audio, a2v_ref_img, a2v_headpose_video],
|
45 |
+
)
|
46 |
|
47 |
|
48 |
with gr.Tab("Video2video"):
|
49 |
+
with gr.Row():
|
50 |
+
with gr.Column():
|
51 |
+
with gr.Row():
|
52 |
+
v2v_ref_img = gr.Image(label="Upload reference image", sources="upload")
|
53 |
+
v2v_source_video = gr.Video(label="Upload source video", sources="upload")
|
54 |
+
|
55 |
+
with gr.Row():
|
56 |
+
v2v_size_slider = gr.Slider(minimum=256, maximum=1024, step=8, value=512, label="Video size (-W & -H)")
|
57 |
+
v2v_step_slider = gr.Slider(minimum=5, maximum=50, step=1, value=20, label="Steps (--steps)")
|
58 |
+
|
59 |
+
with gr.Row():
|
60 |
+
v2v_length = gr.Slider(minimum=0, maximum=300, step=1, value=150, label="Length (-L) (Set 0 to automatically calculate video length.)")
|
61 |
+
v2v_seed = gr.Number(value=42, label="Seed (--seed)")
|
62 |
+
|
63 |
+
v2v_botton = gr.Button("Generate", variant="primary")
|
|
|
|
|
64 |
v2v_output_video = gr.PlayableVideo(label="Result", interactive=False)
|
65 |
|
66 |
+
gr.Examples(
|
67 |
+
examples=[
|
68 |
+
["configs/inference/ref_images/Aragaki.png", "configs/inference/video/Aragaki_song.mp4"],
|
69 |
+
["configs/inference/ref_images/solo.png", "configs/inference/video/Aragaki_song.mp4"],
|
70 |
+
["configs/inference/ref_images/lyl.png", "configs/inference/head_pose_temp/pose_ref_video.mp4"],
|
71 |
+
],
|
72 |
+
inputs=[v2v_ref_img, v2v_source_video, a2v_headpose_video],
|
73 |
+
)
|
74 |
+
|
75 |
a2v_botton.click(
|
76 |
fn=audio2video,
|
77 |
inputs=[a2v_input_audio, a2v_ref_img, a2v_headpose_video,
|
78 |
a2v_size_slider, a2v_step_slider, a2v_length, a2v_seed],
|
79 |
+
outputs=[a2v_output_video, a2v_ref_img]
|
80 |
)
|
|
|
|
|
|
|
|
|
|
|
81 |
v2v_botton.click(
|
82 |
fn=video2video,
|
83 |
inputs=[v2v_ref_img, v2v_source_video,
|
84 |
v2v_size_slider, v2v_step_slider, v2v_length, v2v_seed],
|
85 |
+
outputs=[v2v_output_video, v2v_ref_img]
|
86 |
)
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
demo.launch()
|
src/audio2vid.py
CHANGED
@@ -9,25 +9,27 @@ import spaces
|
|
9 |
from scipy.spatial.transform import Rotation as R
|
10 |
from scipy.interpolate import interp1d
|
11 |
|
12 |
-
from diffusers import AutoencoderKL, DDIMScheduler
|
13 |
-
from einops import repeat
|
14 |
from omegaconf import OmegaConf
|
15 |
from PIL import Image
|
16 |
from torchvision import transforms
|
17 |
-
from transformers import CLIPVisionModelWithProjection
|
18 |
|
19 |
|
20 |
-
from src.models.pose_guider import PoseGuider
|
21 |
-
from src.models.unet_2d_condition import UNet2DConditionModel
|
22 |
-
from src.models.unet_3d import UNet3DConditionModel
|
23 |
-
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
|
24 |
from src.utils.util import save_videos_grid
|
25 |
|
26 |
-
from src.audio_models.model import Audio2MeshModel
|
27 |
from src.utils.audio_util import prepare_audio_feature
|
28 |
-
from src.utils.mp_utils import LMKExtractor
|
29 |
-
from src.utils.draw_util import FaceMeshVisualizer
|
30 |
from src.utils.pose_util import project_points
|
|
|
|
|
31 |
|
32 |
|
33 |
def matrix_to_euler_and_translation(matrix):
|
@@ -49,7 +51,7 @@ def smooth_pose_seq(pose_seq, window_size=5):
|
|
49 |
return smoothed_pose_seq
|
50 |
|
51 |
def get_headpose_temp(input_video):
|
52 |
-
lmk_extractor = LMKExtractor()
|
53 |
cap = cv2.VideoCapture(input_video)
|
54 |
|
55 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
@@ -98,70 +100,70 @@ def audio2video(input_audio, ref_img, headpose_video=None, size=512, steps=25, l
|
|
98 |
|
99 |
config = OmegaConf.load('./configs/prompts/animation_audio.yaml')
|
100 |
|
101 |
-
if config.weight_dtype == "fp16":
|
102 |
-
|
103 |
-
else:
|
104 |
-
|
105 |
|
106 |
audio_infer_config = OmegaConf.load(config.audio_inference_config)
|
107 |
-
# prepare model
|
108 |
-
a2m_model = Audio2MeshModel(audio_infer_config['a2m_model'])
|
109 |
-
a2m_model.load_state_dict(torch.load(audio_infer_config['pretrained_model']['a2m_ckpt']), strict=False)
|
110 |
-
a2m_model.cuda().eval()
|
111 |
|
112 |
-
vae = AutoencoderKL.from_pretrained(
|
113 |
-
|
114 |
-
).to("cuda", dtype=weight_dtype)
|
115 |
|
116 |
-
reference_unet = UNet2DConditionModel.from_pretrained(
|
117 |
-
|
118 |
-
|
119 |
-
).to(dtype=weight_dtype, device="cuda")
|
120 |
|
121 |
-
inference_config_path = config.inference_config
|
122 |
-
infer_config = OmegaConf.load(inference_config_path)
|
123 |
-
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
).to(dtype=weight_dtype, device="cuda")
|
129 |
|
130 |
|
131 |
-
pose_guider = PoseGuider(noise_latent_channels=320, use_ca=True).to(device="cuda", dtype=weight_dtype) # not use cross attention
|
132 |
|
133 |
-
image_enc = CLIPVisionModelWithProjection.from_pretrained(
|
134 |
-
|
135 |
-
).to(dtype=weight_dtype, device="cuda")
|
136 |
|
137 |
-
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
|
138 |
-
scheduler = DDIMScheduler(**sched_kwargs)
|
139 |
|
140 |
generator = torch.manual_seed(seed)
|
141 |
|
142 |
width, height = size, size
|
143 |
|
144 |
-
# load pretrained weights
|
145 |
-
denoising_unet.load_state_dict(
|
146 |
-
|
147 |
-
|
148 |
-
)
|
149 |
-
reference_unet.load_state_dict(
|
150 |
-
|
151 |
-
)
|
152 |
-
pose_guider.load_state_dict(
|
153 |
-
|
154 |
-
)
|
155 |
-
|
156 |
-
pipe = Pose2VideoPipeline(
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
)
|
164 |
-
pipe = pipe.to("cuda", dtype=weight_dtype)
|
165 |
|
166 |
date_str = datetime.now().strftime("%Y%m%d")
|
167 |
time_str = datetime.now().strftime("%H%M")
|
@@ -170,17 +172,20 @@ def audio2video(input_audio, ref_img, headpose_video=None, size=512, steps=25, l
|
|
170 |
save_dir = Path(f"output/{date_str}/{save_dir_name}")
|
171 |
save_dir.mkdir(exist_ok=True, parents=True)
|
172 |
|
173 |
-
lmk_extractor = LMKExtractor()
|
174 |
-
vis = FaceMeshVisualizer(forehead_edge=False)
|
175 |
|
176 |
ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
|
177 |
-
|
|
|
|
|
|
|
178 |
ref_image_np = cv2.resize(ref_image_np, (size, size))
|
179 |
ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB))
|
180 |
|
181 |
face_result = lmk_extractor(ref_image_np)
|
182 |
if face_result is None:
|
183 |
-
return None
|
184 |
|
185 |
lmks = face_result['lmks'].astype(np.float32)
|
186 |
ref_pose = vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True)
|
@@ -217,6 +222,7 @@ def audio2video(input_audio, ref_img, headpose_video=None, size=512, steps=25, l
|
|
217 |
[transforms.Resize((height, width)), transforms.ToTensor()]
|
218 |
)
|
219 |
args_L = len(pose_images) if length==0 or length > len(pose_images) else length
|
|
|
220 |
for pose_image_np in pose_images[: args_L]:
|
221 |
pose_image_pil = Image.fromarray(cv2.cvtColor(pose_image_np, cv2.COLOR_BGR2RGB))
|
222 |
pose_tensor_list.append(pose_transform(pose_image_pil))
|
@@ -249,7 +255,7 @@ def audio2video(input_audio, ref_img, headpose_video=None, size=512, steps=25, l
|
|
249 |
|
250 |
stream = ffmpeg.input(save_path)
|
251 |
audio = ffmpeg.input(input_audio)
|
252 |
-
ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac').run()
|
253 |
os.remove(save_path)
|
254 |
|
255 |
-
return save_path.replace('_noaudio.mp4', '.mp4')
|
|
|
9 |
from scipy.spatial.transform import Rotation as R
|
10 |
from scipy.interpolate import interp1d
|
11 |
|
12 |
+
# from diffusers import AutoencoderKL, DDIMScheduler
|
13 |
+
# from einops import repeat
|
14 |
from omegaconf import OmegaConf
|
15 |
from PIL import Image
|
16 |
from torchvision import transforms
|
17 |
+
# from transformers import CLIPVisionModelWithProjection
|
18 |
|
19 |
|
20 |
+
# from src.models.pose_guider import PoseGuider
|
21 |
+
# from src.models.unet_2d_condition import UNet2DConditionModel
|
22 |
+
# from src.models.unet_3d import UNet3DConditionModel
|
23 |
+
# from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
|
24 |
from src.utils.util import save_videos_grid
|
25 |
|
26 |
+
# from src.audio_models.model import Audio2MeshModel
|
27 |
from src.utils.audio_util import prepare_audio_feature
|
28 |
+
# from src.utils.mp_utils import LMKExtractor
|
29 |
+
# from src.utils.draw_util import FaceMeshVisualizer
|
30 |
from src.utils.pose_util import project_points
|
31 |
+
from src.utils.crop_face_single import crop_face
|
32 |
+
from src.create_modules import lmk_extractor, vis, a2m_model, pipe
|
33 |
|
34 |
|
35 |
def matrix_to_euler_and_translation(matrix):
|
|
|
51 |
return smoothed_pose_seq
|
52 |
|
53 |
def get_headpose_temp(input_video):
|
54 |
+
# lmk_extractor = LMKExtractor()
|
55 |
cap = cv2.VideoCapture(input_video)
|
56 |
|
57 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
100 |
|
101 |
config = OmegaConf.load('./configs/prompts/animation_audio.yaml')
|
102 |
|
103 |
+
# if config.weight_dtype == "fp16":
|
104 |
+
# weight_dtype = torch.float16
|
105 |
+
# else:
|
106 |
+
# weight_dtype = torch.float32
|
107 |
|
108 |
audio_infer_config = OmegaConf.load(config.audio_inference_config)
|
109 |
+
# # prepare model
|
110 |
+
# a2m_model = Audio2MeshModel(audio_infer_config['a2m_model'])
|
111 |
+
# a2m_model.load_state_dict(torch.load(audio_infer_config['pretrained_model']['a2m_ckpt']), strict=False)
|
112 |
+
# a2m_model.cuda().eval()
|
113 |
|
114 |
+
# vae = AutoencoderKL.from_pretrained(
|
115 |
+
# config.pretrained_vae_path,
|
116 |
+
# ).to("cuda", dtype=weight_dtype)
|
117 |
|
118 |
+
# reference_unet = UNet2DConditionModel.from_pretrained(
|
119 |
+
# config.pretrained_base_model_path,
|
120 |
+
# subfolder="unet",
|
121 |
+
# ).to(dtype=weight_dtype, device="cuda")
|
122 |
|
123 |
+
# inference_config_path = config.inference_config
|
124 |
+
# infer_config = OmegaConf.load(inference_config_path)
|
125 |
+
# denoising_unet = UNet3DConditionModel.from_pretrained_2d(
|
126 |
+
# config.pretrained_base_model_path,
|
127 |
+
# config.motion_module_path,
|
128 |
+
# subfolder="unet",
|
129 |
+
# unet_additional_kwargs=infer_config.unet_additional_kwargs,
|
130 |
+
# ).to(dtype=weight_dtype, device="cuda")
|
131 |
|
132 |
|
133 |
+
# pose_guider = PoseGuider(noise_latent_channels=320, use_ca=True).to(device="cuda", dtype=weight_dtype) # not use cross attention
|
134 |
|
135 |
+
# image_enc = CLIPVisionModelWithProjection.from_pretrained(
|
136 |
+
# config.image_encoder_path
|
137 |
+
# ).to(dtype=weight_dtype, device="cuda")
|
138 |
|
139 |
+
# sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
|
140 |
+
# scheduler = DDIMScheduler(**sched_kwargs)
|
141 |
|
142 |
generator = torch.manual_seed(seed)
|
143 |
|
144 |
width, height = size, size
|
145 |
|
146 |
+
# # load pretrained weights
|
147 |
+
# denoising_unet.load_state_dict(
|
148 |
+
# torch.load(config.denoising_unet_path, map_location="cpu"),
|
149 |
+
# strict=False,
|
150 |
+
# )
|
151 |
+
# reference_unet.load_state_dict(
|
152 |
+
# torch.load(config.reference_unet_path, map_location="cpu"),
|
153 |
+
# )
|
154 |
+
# pose_guider.load_state_dict(
|
155 |
+
# torch.load(config.pose_guider_path, map_location="cpu"),
|
156 |
+
# )
|
157 |
+
|
158 |
+
# pipe = Pose2VideoPipeline(
|
159 |
+
# vae=vae,
|
160 |
+
# image_encoder=image_enc,
|
161 |
+
# reference_unet=reference_unet,
|
162 |
+
# denoising_unet=denoising_unet,
|
163 |
+
# pose_guider=pose_guider,
|
164 |
+
# scheduler=scheduler,
|
165 |
+
# )
|
166 |
+
# pipe = pipe.to("cuda", dtype=weight_dtype)
|
167 |
|
168 |
date_str = datetime.now().strftime("%Y%m%d")
|
169 |
time_str = datetime.now().strftime("%H%M")
|
|
|
172 |
save_dir = Path(f"output/{date_str}/{save_dir_name}")
|
173 |
save_dir.mkdir(exist_ok=True, parents=True)
|
174 |
|
175 |
+
# lmk_extractor = LMKExtractor()
|
176 |
+
# vis = FaceMeshVisualizer(forehead_edge=False)
|
177 |
|
178 |
ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
|
179 |
+
ref_image_np = crop_face(ref_image_np, lmk_extractor)
|
180 |
+
if ref_image_np is None:
|
181 |
+
return None, Image.fromarray(ref_img)
|
182 |
+
|
183 |
ref_image_np = cv2.resize(ref_image_np, (size, size))
|
184 |
ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB))
|
185 |
|
186 |
face_result = lmk_extractor(ref_image_np)
|
187 |
if face_result is None:
|
188 |
+
return None, ref_image_pil
|
189 |
|
190 |
lmks = face_result['lmks'].astype(np.float32)
|
191 |
ref_pose = vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True)
|
|
|
222 |
[transforms.Resize((height, width)), transforms.ToTensor()]
|
223 |
)
|
224 |
args_L = len(pose_images) if length==0 or length > len(pose_images) else length
|
225 |
+
args_L = min(args_L, 300)
|
226 |
for pose_image_np in pose_images[: args_L]:
|
227 |
pose_image_pil = Image.fromarray(cv2.cvtColor(pose_image_np, cv2.COLOR_BGR2RGB))
|
228 |
pose_tensor_list.append(pose_transform(pose_image_pil))
|
|
|
255 |
|
256 |
stream = ffmpeg.input(save_path)
|
257 |
audio = ffmpeg.input(input_audio)
|
258 |
+
ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run()
|
259 |
os.remove(save_path)
|
260 |
|
261 |
+
return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil
|
src/utils/crop_face_single.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
|
4 |
+
|
5 |
+
def crop_face(img, lmk_extractor, expand=1.5):
|
6 |
+
result = lmk_extractor(img) # cv2 BGR
|
7 |
+
|
8 |
+
if result is None:
|
9 |
+
return None
|
10 |
+
|
11 |
+
H, W, _ = img.shape
|
12 |
+
lmks = result['lmks']
|
13 |
+
lmks[:, 0] *= W
|
14 |
+
lmks[:, 1] *= H
|
15 |
+
|
16 |
+
x_min = np.min(lmks[:, 0])
|
17 |
+
x_max = np.max(lmks[:, 0])
|
18 |
+
y_min = np.min(lmks[:, 1])
|
19 |
+
y_max = np.max(lmks[:, 1])
|
20 |
+
|
21 |
+
width = x_max - x_min
|
22 |
+
height = y_max - y_min
|
23 |
+
|
24 |
+
center_x = x_min + width / 2
|
25 |
+
center_y = y_min + height / 2
|
26 |
+
|
27 |
+
width *= expand
|
28 |
+
height *= expand
|
29 |
+
|
30 |
+
size = max(width, height)
|
31 |
+
|
32 |
+
x_min = int(center_x - size / 2)
|
33 |
+
x_max = int(center_x + size / 2)
|
34 |
+
y_min = int(center_y - size / 2)
|
35 |
+
y_max = int(center_y + size / 2)
|
36 |
+
|
37 |
+
top = max(0, -y_min)
|
38 |
+
bottom = max(0, y_max - img.shape[0])
|
39 |
+
left = max(0, -x_min)
|
40 |
+
right = max(0, x_max - img.shape[1])
|
41 |
+
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=0)
|
42 |
+
|
43 |
+
cropped_img = img[y_min + top:y_max + top, x_min + left:x_max + left]
|
44 |
+
|
45 |
+
return cropped_img
|
src/vid2vid.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import argparse
|
2 |
import os
|
3 |
import shutil
|
4 |
import ffmpeg
|
@@ -8,88 +7,89 @@ import numpy as np
|
|
8 |
import cv2
|
9 |
import torch
|
10 |
import spaces
|
11 |
-
from diffusers import AutoencoderKL, DDIMScheduler
|
12 |
-
from einops import repeat
|
13 |
-
from omegaconf import OmegaConf
|
14 |
from PIL import Image
|
15 |
from torchvision import transforms
|
16 |
-
from transformers import CLIPVisionModelWithProjection
|
17 |
|
18 |
-
from src.models.pose_guider import PoseGuider
|
19 |
-
from src.models.unet_2d_condition import UNet2DConditionModel
|
20 |
-
from src.models.unet_3d import UNet3DConditionModel
|
21 |
-
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
|
22 |
from src.utils.util import get_fps, read_frames, save_videos_grid
|
23 |
|
24 |
-
from src.utils.mp_utils import LMKExtractor
|
25 |
-
from src.utils.draw_util import FaceMeshVisualizer
|
26 |
from src.utils.pose_util import project_points_with_trans, matrix_to_euler_and_translation, euler_and_translation_to_matrix
|
27 |
from src.audio2vid import smooth_pose_seq
|
28 |
-
|
|
|
29 |
|
30 |
@spaces.GPU
|
31 |
def video2video(ref_img, source_video, size=512, steps=25, length=150, seed=42):
|
32 |
cfg = 3.5
|
33 |
|
34 |
-
config = OmegaConf.load('./configs/prompts/animation_facereenac.yaml')
|
35 |
|
36 |
-
if config.weight_dtype == "fp16":
|
37 |
-
|
38 |
-
else:
|
39 |
-
|
40 |
|
41 |
-
vae = AutoencoderKL.from_pretrained(
|
42 |
-
|
43 |
-
).to("cuda", dtype=weight_dtype)
|
44 |
|
45 |
-
reference_unet = UNet2DConditionModel.from_pretrained(
|
46 |
-
|
47 |
-
|
48 |
-
).to(dtype=weight_dtype, device="cuda")
|
49 |
|
50 |
-
inference_config_path = config.inference_config
|
51 |
-
infer_config = OmegaConf.load(inference_config_path)
|
52 |
-
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
).to(dtype=weight_dtype, device="cuda")
|
58 |
|
59 |
-
pose_guider = PoseGuider(noise_latent_channels=320, use_ca=True).to(device="cuda", dtype=weight_dtype) # not use cross attention
|
60 |
|
61 |
-
image_enc = CLIPVisionModelWithProjection.from_pretrained(
|
62 |
-
|
63 |
-
).to(dtype=weight_dtype, device="cuda")
|
64 |
|
65 |
-
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
|
66 |
-
scheduler = DDIMScheduler(**sched_kwargs)
|
67 |
|
68 |
generator = torch.manual_seed(seed)
|
69 |
|
70 |
width, height = size, size
|
71 |
|
72 |
-
# load pretrained weights
|
73 |
-
denoising_unet.load_state_dict(
|
74 |
-
|
75 |
-
|
76 |
-
)
|
77 |
-
reference_unet.load_state_dict(
|
78 |
-
|
79 |
-
)
|
80 |
-
pose_guider.load_state_dict(
|
81 |
-
|
82 |
-
)
|
83 |
-
|
84 |
-
pipe = Pose2VideoPipeline(
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
)
|
92 |
-
pipe = pipe.to("cuda", dtype=weight_dtype)
|
93 |
|
94 |
date_str = datetime.now().strftime("%Y%m%d")
|
95 |
time_str = datetime.now().strftime("%H%M")
|
@@ -99,24 +99,25 @@ def video2video(ref_img, source_video, size=512, steps=25, length=150, seed=42):
|
|
99 |
save_dir.mkdir(exist_ok=True, parents=True)
|
100 |
|
101 |
|
102 |
-
lmk_extractor = LMKExtractor()
|
103 |
-
vis = FaceMeshVisualizer(forehead_edge=False)
|
104 |
|
105 |
|
106 |
|
107 |
ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
|
108 |
-
|
|
|
|
|
|
|
109 |
ref_image_np = cv2.resize(ref_image_np, (size, size))
|
110 |
ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB))
|
111 |
|
112 |
face_result = lmk_extractor(ref_image_np)
|
113 |
if face_result is None:
|
114 |
-
return None
|
115 |
|
116 |
lmks = face_result['lmks'].astype(np.float32)
|
117 |
ref_pose = vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True)
|
118 |
-
|
119 |
-
|
120 |
|
121 |
source_images = read_frames(source_video)
|
122 |
src_fps = get_fps(source_video)
|
@@ -134,6 +135,7 @@ def video2video(ref_img, source_video, size=512, steps=25, length=150, seed=42):
|
|
134 |
bs_list = []
|
135 |
src_tensor_list = []
|
136 |
args_L = len(source_images) if length==0 or length*step > len(source_images) else length*step
|
|
|
137 |
for src_image_pil in source_images[: args_L: step]:
|
138 |
src_tensor_list.append(pose_transform(src_image_pil))
|
139 |
src_img_np = cv2.cvtColor(np.array(src_image_pil), cv2.COLOR_RGB2BGR)
|
@@ -209,7 +211,7 @@ def video2video(ref_img, source_video, size=512, steps=25, length=150, seed=42):
|
|
209 |
# merge audio and video
|
210 |
stream = ffmpeg.input(save_path)
|
211 |
audio = ffmpeg.input(audio_output)
|
212 |
-
ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac').run()
|
213 |
|
214 |
os.remove(save_path)
|
215 |
os.remove(audio_output)
|
@@ -219,4 +221,4 @@ def video2video(ref_img, source_video, size=512, steps=25, length=150, seed=42):
|
|
219 |
save_path.replace('_noaudio.mp4', '.mp4')
|
220 |
)
|
221 |
|
222 |
-
return save_path.replace('_noaudio.mp4', '.mp4')
|
|
|
|
|
1 |
import os
|
2 |
import shutil
|
3 |
import ffmpeg
|
|
|
7 |
import cv2
|
8 |
import torch
|
9 |
import spaces
|
10 |
+
# from diffusers import AutoencoderKL, DDIMScheduler
|
11 |
+
# from einops import repeat
|
12 |
+
# from omegaconf import OmegaConf
|
13 |
from PIL import Image
|
14 |
from torchvision import transforms
|
15 |
+
# from transformers import CLIPVisionModelWithProjection
|
16 |
|
17 |
+
# from src.models.pose_guider import PoseGuider
|
18 |
+
# from src.models.unet_2d_condition import UNet2DConditionModel
|
19 |
+
# from src.models.unet_3d import UNet3DConditionModel
|
20 |
+
# from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
|
21 |
from src.utils.util import get_fps, read_frames, save_videos_grid
|
22 |
|
23 |
+
# from src.utils.mp_utils import LMKExtractor
|
24 |
+
# from src.utils.draw_util import FaceMeshVisualizer
|
25 |
from src.utils.pose_util import project_points_with_trans, matrix_to_euler_and_translation, euler_and_translation_to_matrix
|
26 |
from src.audio2vid import smooth_pose_seq
|
27 |
+
from src.utils.crop_face_single import crop_face
|
28 |
+
from src.create_modules import lmk_extractor, vis, pipe
|
29 |
|
30 |
@spaces.GPU
|
31 |
def video2video(ref_img, source_video, size=512, steps=25, length=150, seed=42):
|
32 |
cfg = 3.5
|
33 |
|
34 |
+
# config = OmegaConf.load('./configs/prompts/animation_facereenac.yaml')
|
35 |
|
36 |
+
# if config.weight_dtype == "fp16":
|
37 |
+
# weight_dtype = torch.float16
|
38 |
+
# else:
|
39 |
+
# weight_dtype = torch.float32
|
40 |
|
41 |
+
# vae = AutoencoderKL.from_pretrained(
|
42 |
+
# config.pretrained_vae_path,
|
43 |
+
# ).to("cuda", dtype=weight_dtype)
|
44 |
|
45 |
+
# reference_unet = UNet2DConditionModel.from_pretrained(
|
46 |
+
# config.pretrained_base_model_path,
|
47 |
+
# subfolder="unet",
|
48 |
+
# ).to(dtype=weight_dtype, device="cuda")
|
49 |
|
50 |
+
# inference_config_path = config.inference_config
|
51 |
+
# infer_config = OmegaConf.load(inference_config_path)
|
52 |
+
# denoising_unet = UNet3DConditionModel.from_pretrained_2d(
|
53 |
+
# config.pretrained_base_model_path,
|
54 |
+
# config.motion_module_path,
|
55 |
+
# subfolder="unet",
|
56 |
+
# unet_additional_kwargs=infer_config.unet_additional_kwargs,
|
57 |
+
# ).to(dtype=weight_dtype, device="cuda")
|
58 |
|
59 |
+
# pose_guider = PoseGuider(noise_latent_channels=320, use_ca=True).to(device="cuda", dtype=weight_dtype) # not use cross attention
|
60 |
|
61 |
+
# image_enc = CLIPVisionModelWithProjection.from_pretrained(
|
62 |
+
# config.image_encoder_path
|
63 |
+
# ).to(dtype=weight_dtype, device="cuda")
|
64 |
|
65 |
+
# sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
|
66 |
+
# scheduler = DDIMScheduler(**sched_kwargs)
|
67 |
|
68 |
generator = torch.manual_seed(seed)
|
69 |
|
70 |
width, height = size, size
|
71 |
|
72 |
+
# # load pretrained weights
|
73 |
+
# denoising_unet.load_state_dict(
|
74 |
+
# torch.load(config.denoising_unet_path, map_location="cpu"),
|
75 |
+
# strict=False,
|
76 |
+
# )
|
77 |
+
# reference_unet.load_state_dict(
|
78 |
+
# torch.load(config.reference_unet_path, map_location="cpu"),
|
79 |
+
# )
|
80 |
+
# pose_guider.load_state_dict(
|
81 |
+
# torch.load(config.pose_guider_path, map_location="cpu"),
|
82 |
+
# )
|
83 |
+
|
84 |
+
# pipe = Pose2VideoPipeline(
|
85 |
+
# vae=vae,
|
86 |
+
# image_encoder=image_enc,
|
87 |
+
# reference_unet=reference_unet,
|
88 |
+
# denoising_unet=denoising_unet,
|
89 |
+
# pose_guider=pose_guider,
|
90 |
+
# scheduler=scheduler,
|
91 |
+
# )
|
92 |
+
# pipe = pipe.to("cuda", dtype=weight_dtype)
|
93 |
|
94 |
date_str = datetime.now().strftime("%Y%m%d")
|
95 |
time_str = datetime.now().strftime("%H%M")
|
|
|
99 |
save_dir.mkdir(exist_ok=True, parents=True)
|
100 |
|
101 |
|
102 |
+
# lmk_extractor = LMKExtractor()
|
103 |
+
# vis = FaceMeshVisualizer(forehead_edge=False)
|
104 |
|
105 |
|
106 |
|
107 |
ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
|
108 |
+
ref_image_np = crop_face(ref_image_np, lmk_extractor)
|
109 |
+
if ref_image_np is None:
|
110 |
+
return None, Image.fromarray(ref_img)
|
111 |
+
|
112 |
ref_image_np = cv2.resize(ref_image_np, (size, size))
|
113 |
ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB))
|
114 |
|
115 |
face_result = lmk_extractor(ref_image_np)
|
116 |
if face_result is None:
|
117 |
+
return None, ref_image_pil
|
118 |
|
119 |
lmks = face_result['lmks'].astype(np.float32)
|
120 |
ref_pose = vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True)
|
|
|
|
|
121 |
|
122 |
source_images = read_frames(source_video)
|
123 |
src_fps = get_fps(source_video)
|
|
|
135 |
bs_list = []
|
136 |
src_tensor_list = []
|
137 |
args_L = len(source_images) if length==0 or length*step > len(source_images) else length*step
|
138 |
+
args_L = min(args_L, 300*step)
|
139 |
for src_image_pil in source_images[: args_L: step]:
|
140 |
src_tensor_list.append(pose_transform(src_image_pil))
|
141 |
src_img_np = cv2.cvtColor(np.array(src_image_pil), cv2.COLOR_RGB2BGR)
|
|
|
211 |
# merge audio and video
|
212 |
stream = ffmpeg.input(save_path)
|
213 |
audio = ffmpeg.input(audio_output)
|
214 |
+
ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run()
|
215 |
|
216 |
os.remove(save_path)
|
217 |
os.remove(audio_output)
|
|
|
221 |
save_path.replace('_noaudio.mp4', '.mp4')
|
222 |
)
|
223 |
|
224 |
+
return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil
|