File size: 15,249 Bytes
c7a4aba
 
 
 
 
 
d947e9b
 
c7a4aba
d947e9b
 
c7a4aba
 
d947e9b
c7a4aba
 
 
 
 
 
 
 
 
 
 
 
 
d947e9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7a4aba
d947e9b
 
 
 
 
c7a4aba
d947e9b
 
 
 
c7a4aba
d947e9b
 
 
 
c7a4aba
d947e9b
c7a4aba
d947e9b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import os
import ffmpeg
from datetime import datetime
from pathlib import Path
import numpy as np
import cv2
import spaces
import shutil
import torch
from omegaconf import OmegaConf
from PIL import Image
from scipy.spatial.transform import Rotation as R
from scipy.interpolate import interp1d
from torchvision import transforms

from diffusers import AutoencoderKL, DDIMScheduler
from omegaconf import OmegaConf
from transformers import CLIPVisionModelWithProjection

from src.models.pose_guider import PoseGuider
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d import UNet3DConditionModel
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline

from src.audio_models.model import Audio2MeshModel
from src.utils.mp_utils  import LMKExtractor
from src.utils.draw_util import FaceMeshVisualizer
from src.utils.util import get_fps, read_frames, save_videos_grid

from src.utils.audio_util import prepare_audio_feature
from src.utils.pose_util import project_points_with_trans, matrix_to_euler_and_translation, euler_and_translation_to_matrix, project_points
from src.utils.crop_face_single import crop_face

class Processer():
    def __init__(self):
        self.create_models()

    def create_models(self):

        self.lmk_extractor = LMKExtractor()
        self.vis = FaceMeshVisualizer(forehead_edge=False)

        config = OmegaConf.load('./configs/prompts/animation_audio.yaml')

        if config.weight_dtype == "fp16":
            weight_dtype = torch.float16
        else:
            weight_dtype = torch.float32
            
        audio_infer_config = OmegaConf.load(config.audio_inference_config)
        # prepare model
        self.a2m_model = Audio2MeshModel(audio_infer_config['a2m_model'])
        self.a2m_model.load_state_dict(torch.load(audio_infer_config['pretrained_model']['a2m_ckpt']), strict=False)
        self.a2m_model.cuda().eval()

        self.vae = AutoencoderKL.from_pretrained(
            config.pretrained_vae_path,
        ).to("cuda", dtype=weight_dtype)

        self.reference_unet = UNet2DConditionModel.from_pretrained(
            config.pretrained_base_model_path,
            subfolder="unet",
        ).to(dtype=weight_dtype, device="cuda")

        inference_config_path = config.inference_config
        infer_config = OmegaConf.load(inference_config_path)
        self.denoising_unet = UNet3DConditionModel.from_pretrained_2d(
            config.pretrained_base_model_path,
            config.motion_module_path,
            subfolder="unet",
            unet_additional_kwargs=infer_config.unet_additional_kwargs,
        ).to(dtype=weight_dtype, device="cuda")

        self.pose_guider = PoseGuider(noise_latent_channels=320, use_ca=True).to(device="cuda", dtype=weight_dtype) # not use cross attention

        self.image_enc = CLIPVisionModelWithProjection.from_pretrained(
            config.image_encoder_path
        ).to(dtype=weight_dtype, device="cuda")

        sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
        self.scheduler = DDIMScheduler(**sched_kwargs)

        # load pretrained weights
        self.denoising_unet.load_state_dict(
            torch.load(config.denoising_unet_path, map_location="cpu"),
            strict=False,
        )
        self.reference_unet.load_state_dict(
            torch.load(config.reference_unet_path, map_location="cpu"),
        )
        self.pose_guider.load_state_dict(
            torch.load(config.pose_guider_path, map_location="cpu"),
        )

        self.pipe = Pose2VideoPipeline(
            vae=self.vae,
            image_encoder=self.image_enc,
            reference_unet=self.reference_unet,
            denoising_unet=self.denoising_unet,
            pose_guider=self.pose_guider,
            scheduler=self.scheduler,
        )
        self.pipe = self.pipe.to("cuda", dtype=weight_dtype)
        
    
    @spaces.GPU
    def audio2video(self, input_audio, ref_img, headpose_video=None, size=512, steps=25, length=150, seed=42):
        fps = 30
        cfg = 3.5

        config = OmegaConf.load('./configs/prompts/animation_audio.yaml')
        audio_infer_config = OmegaConf.load(config.audio_inference_config)
        generator = torch.manual_seed(seed)

        width, height = size, size

        date_str = datetime.now().strftime("%Y%m%d")
        time_str = datetime.now().strftime("%H%M")
        save_dir_name = f"{time_str}--seed_{seed}-{size}x{size}"

        save_dir = Path(f"output/{date_str}/{save_dir_name}")
        save_dir.mkdir(exist_ok=True, parents=True)

        ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
        ref_image_np = crop_face(ref_image_np, self.lmk_extractor)
        if ref_image_np is None:
            return None, Image.fromarray(ref_img)
        
        ref_image_np = cv2.resize(ref_image_np, (size, size))
        ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB))
        
        face_result = self.lmk_extractor(ref_image_np)
        if face_result is None: 
            return None, ref_image_pil
        
        lmks = face_result['lmks'].astype(np.float32)
        ref_pose = self.vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True)
        
        sample = prepare_audio_feature(input_audio, wav2vec_model_path=audio_infer_config['a2m_model']['model_path'])
        sample['audio_feature'] = torch.from_numpy(sample['audio_feature']).float().cuda()
        sample['audio_feature'] = sample['audio_feature'].unsqueeze(0)

        # inference
        pred = self.a2m_model.infer(sample['audio_feature'], sample['seq_len'])
        pred = pred.squeeze().detach().cpu().numpy()
        pred = pred.reshape(pred.shape[0], -1, 3)
        pred = pred + face_result['lmks3d']
        
        if headpose_video is not None:
            pose_seq = get_headpose_temp(headpose_video, self.lmk_extractor)
        else:
            pose_seq = np.load(config['pose_temp'])
        mirrored_pose_seq = np.concatenate((pose_seq, pose_seq[-2:0:-1]), axis=0)
        cycled_pose_seq = np.tile(mirrored_pose_seq, (sample['seq_len'] // len(mirrored_pose_seq) + 1, 1))[:sample['seq_len']]

        # project 3D mesh to 2D landmark
        projected_vertices = project_points(pred, face_result['trans_mat'], cycled_pose_seq, [height, width])

        pose_images = []
        for i, verts in enumerate(projected_vertices):
            lmk_img = self.vis.draw_landmarks((width, height), verts, normed=False)
            pose_images.append(lmk_img)

        pose_list = []
        pose_tensor_list = []

        pose_transform = transforms.Compose(
            [transforms.Resize((height, width)), transforms.ToTensor()]
        )
        args_L = len(pose_images) if length==0 or length > len(pose_images) else length
        args_L = min(args_L, 300)
        for pose_image_np in pose_images[: args_L]:
            pose_image_pil = Image.fromarray(cv2.cvtColor(pose_image_np, cv2.COLOR_BGR2RGB))
            pose_tensor_list.append(pose_transform(pose_image_pil))
            pose_image_np = cv2.resize(pose_image_np,  (width, height))
            pose_list.append(pose_image_np)
        
        pose_list = np.array(pose_list)
        
        video_length = len(pose_tensor_list)

        video = self.pipe(
            ref_image_pil,
            pose_list,
            ref_pose,
            width,
            height,
            video_length,
            steps,
            cfg,
            generator=generator,
        ).videos

        save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio.mp4"
        save_videos_grid(
            video,
            save_path,
            n_rows=1,
            fps=fps,
        )
        
        stream = ffmpeg.input(save_path)
        audio = ffmpeg.input(input_audio)
        ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run()
        os.remove(save_path)
        
        return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil
    
    @spaces.GPU
    def video2video(self, ref_img, source_video, size=512, steps=25, length=150, seed=42):
        cfg = 3.5

        generator = torch.manual_seed(seed)
        width, height = size, size

        date_str = datetime.now().strftime("%Y%m%d")
        time_str = datetime.now().strftime("%H%M")
        save_dir_name = f"{time_str}--seed_{seed}-{size}x{size}"

        save_dir = Path(f"output/{date_str}/{save_dir_name}")
        save_dir.mkdir(exist_ok=True, parents=True)

        ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
        ref_image_np = crop_face(ref_image_np, self.lmk_extractor)
        if ref_image_np is None:
            return None, Image.fromarray(ref_img)
        
        ref_image_np = cv2.resize(ref_image_np, (size, size))
        ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB))
        
        face_result = self.lmk_extractor(ref_image_np)
        if face_result is None: 
            return None, ref_image_pil
        
        lmks = face_result['lmks'].astype(np.float32)
        ref_pose = self.vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True)

        source_images = read_frames(source_video)
        src_fps = get_fps(source_video)
        pose_transform = transforms.Compose(
            [transforms.Resize((height, width)), transforms.ToTensor()]
        )
        
        step = 1
        if src_fps == 60:
            src_fps = 30
            step = 2
        
        pose_trans_list = []
        verts_list = []
        bs_list = []
        src_tensor_list = []
        args_L = len(source_images) if length==0 or length*step > len(source_images) else length*step
        args_L = min(args_L, 300*step)
        for src_image_pil in source_images[: args_L: step]:
            src_tensor_list.append(pose_transform(src_image_pil))
            src_img_np = cv2.cvtColor(np.array(src_image_pil), cv2.COLOR_RGB2BGR)
            frame_height, frame_width, _ = src_img_np.shape
            src_img_result = self.lmk_extractor(src_img_np)
            if src_img_result is None:
                break
            pose_trans_list.append(src_img_result['trans_mat'])
            verts_list.append(src_img_result['lmks3d'])
            bs_list.append(src_img_result['bs'])

        trans_mat_arr = np.array(pose_trans_list)
        verts_arr = np.array(verts_list)
        bs_arr = np.array(bs_list)
        min_bs_idx = np.argmin(bs_arr.sum(1))
        
        # compute delta pose
        pose_arr = np.zeros([trans_mat_arr.shape[0], 6])

        for i in range(pose_arr.shape[0]):
            euler_angles, translation_vector = matrix_to_euler_and_translation(trans_mat_arr[i]) # real pose of source
            pose_arr[i, :3] =  euler_angles
            pose_arr[i, 3:6] =  translation_vector
        
        init_tran_vec = face_result['trans_mat'][:3, 3] # init translation of tgt
        pose_arr[:, 3:6] = pose_arr[:, 3:6] - pose_arr[0, 3:6] + init_tran_vec # (relative translation of source) + (init translation of tgt)

        pose_arr_smooth = smooth_pose_seq(pose_arr, window_size=3)
        pose_mat_smooth = [euler_and_translation_to_matrix(pose_arr_smooth[i][:3], pose_arr_smooth[i][3:6]) for i in range(pose_arr_smooth.shape[0])]    
        pose_mat_smooth = np.array(pose_mat_smooth)   

        # face retarget
        verts_arr = verts_arr - verts_arr[min_bs_idx] + face_result['lmks3d']
        # project 3D mesh to 2D landmark
        projected_vertices = project_points_with_trans(verts_arr, pose_mat_smooth, [frame_height, frame_width])
        
        pose_list = []
        for i, verts in enumerate(projected_vertices):
            lmk_img = self.vis.draw_landmarks((frame_width, frame_height), verts, normed=False)
            pose_image_np = cv2.resize(lmk_img,  (width, height))
            pose_list.append(pose_image_np)
        
        pose_list = np.array(pose_list)
        
        video_length = len(pose_list)

        video = self.pipe(
            ref_image_pil,
            pose_list,
            ref_pose,
            width,
            height,
            video_length,
            steps,
            cfg,
            generator=generator,
        ).videos

        save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio.mp4"
        save_videos_grid(
            video,
            save_path,
            n_rows=1,
            fps=src_fps,
        )
        
        audio_output = f'{save_dir}/audio_from_video.aac'
        # extract audio
        try:
            ffmpeg.input(source_video).output(audio_output, acodec='copy').run()
            # merge audio and video
            stream = ffmpeg.input(save_path)
            audio = ffmpeg.input(audio_output)
            ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run()
        
            os.remove(save_path)
            os.remove(audio_output)
        except:
            shutil.move(
                save_path,
                save_path.replace('_noaudio.mp4', '.mp4')
            )
        
        return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil


def matrix_to_euler_and_translation(matrix):
    rotation_matrix = matrix[:3, :3]
    translation_vector = matrix[:3, 3]
    rotation = R.from_matrix(rotation_matrix)
    euler_angles = rotation.as_euler('xyz', degrees=True)
    return euler_angles, translation_vector


def smooth_pose_seq(pose_seq, window_size=5):
    smoothed_pose_seq = np.zeros_like(pose_seq)

    for i in range(len(pose_seq)):
        start = max(0, i - window_size // 2)
        end = min(len(pose_seq), i + window_size // 2 + 1)
        smoothed_pose_seq[i] = np.mean(pose_seq[start:end], axis=0)

    return smoothed_pose_seq

def get_headpose_temp(input_video, lmk_extractor):
    cap = cv2.VideoCapture(input_video)

    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = cap.get(cv2.CAP_PROP_FPS)  

    trans_mat_list = []
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        result = lmk_extractor(frame)
        trans_mat_list.append(result['trans_mat'].astype(np.float32))
    cap.release()

    trans_mat_arr = np.array(trans_mat_list)

    # compute delta pose
    trans_mat_inv_frame_0 = np.linalg.inv(trans_mat_arr[0])
    pose_arr = np.zeros([trans_mat_arr.shape[0], 6])

    for i in range(pose_arr.shape[0]):
        pose_mat = trans_mat_inv_frame_0 @ trans_mat_arr[i]
        euler_angles, translation_vector = matrix_to_euler_and_translation(pose_mat)
        pose_arr[i, :3] =  euler_angles
        pose_arr[i, 3:6] =  translation_vector

    # interpolate to 30 fps
    new_fps = 30
    old_time = np.linspace(0, total_frames / fps, total_frames)
    new_time = np.linspace(0, total_frames / fps, int(total_frames * new_fps / fps))

    pose_arr_interp = np.zeros((len(new_time), 6))
    for i in range(6):
        interp_func = interp1d(old_time, pose_arr[:, i])
        pose_arr_interp[:, i] = interp_func(new_time)

    pose_arr_smooth = smooth_pose_seq(pose_arr_interp)
    
    return pose_arr_smooth