Spaces:
Runtime error
Runtime error
zejunyang
commited on
Commit
·
d947e9b
1
Parent(s):
727741c
update
Browse files- app.py +8 -4
- src/create_modules.py +372 -69
app.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
from src.audio2vid import audio2video
|
4 |
-
from src.vid2vid import video2video
|
|
|
|
|
5 |
|
6 |
title = r"""
|
7 |
<h1>AniPortrait</h1>
|
@@ -11,6 +13,8 @@ description = r"""
|
|
11 |
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/Zejun-Yang/AniPortrait' target='_blank'><b>AniPortrait: Audio-Driven Synthesis of Photorealistic Portrait Animations</b></a>.<br>
|
12 |
"""
|
13 |
|
|
|
|
|
14 |
with gr.Blocks() as demo:
|
15 |
|
16 |
gr.Markdown(title)
|
@@ -73,13 +77,13 @@ with gr.Blocks() as demo:
|
|
73 |
)
|
74 |
|
75 |
a2v_botton.click(
|
76 |
-
fn=audio2video,
|
77 |
inputs=[a2v_input_audio, a2v_ref_img, a2v_headpose_video,
|
78 |
a2v_size_slider, a2v_step_slider, a2v_length, a2v_seed],
|
79 |
outputs=[a2v_output_video, a2v_ref_img]
|
80 |
)
|
81 |
v2v_botton.click(
|
82 |
-
fn=video2video,
|
83 |
inputs=[v2v_ref_img, v2v_source_video,
|
84 |
v2v_size_slider, v2v_step_slider, v2v_length, v2v_seed],
|
85 |
outputs=[v2v_output_video, v2v_ref_img]
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
# from src.audio2vid import audio2video
|
4 |
+
# from src.vid2vid import video2video
|
5 |
+
|
6 |
+
from src.create_modules import Processer
|
7 |
|
8 |
title = r"""
|
9 |
<h1>AniPortrait</h1>
|
|
|
13 |
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/Zejun-Yang/AniPortrait' target='_blank'><b>AniPortrait: Audio-Driven Synthesis of Photorealistic Portrait Animations</b></a>.<br>
|
14 |
"""
|
15 |
|
16 |
+
main_processer = Processer()
|
17 |
+
|
18 |
with gr.Blocks() as demo:
|
19 |
|
20 |
gr.Markdown(title)
|
|
|
77 |
)
|
78 |
|
79 |
a2v_botton.click(
|
80 |
+
fn=main_processer.audio2video,
|
81 |
inputs=[a2v_input_audio, a2v_ref_img, a2v_headpose_video,
|
82 |
a2v_size_slider, a2v_step_slider, a2v_length, a2v_seed],
|
83 |
outputs=[a2v_output_video, a2v_ref_img]
|
84 |
)
|
85 |
v2v_botton.click(
|
86 |
+
fn=main_processer.video2video,
|
87 |
inputs=[v2v_ref_img, v2v_source_video,
|
88 |
v2v_size_slider, v2v_step_slider, v2v_length, v2v_seed],
|
89 |
outputs=[v2v_output_video, v2v_ref_img]
|
src/create_modules.py
CHANGED
@@ -4,93 +4,396 @@ from datetime import datetime
|
|
4 |
from pathlib import Path
|
5 |
import numpy as np
|
6 |
import cv2
|
|
|
|
|
7 |
import torch
|
|
|
|
|
8 |
from scipy.spatial.transform import Rotation as R
|
9 |
from scipy.interpolate import interp1d
|
|
|
10 |
|
11 |
from diffusers import AutoencoderKL, DDIMScheduler
|
12 |
-
from einops import repeat
|
13 |
from omegaconf import OmegaConf
|
14 |
-
from PIL import Image
|
15 |
-
from torchvision import transforms
|
16 |
from transformers import CLIPVisionModelWithProjection
|
17 |
|
18 |
-
|
19 |
from src.models.pose_guider import PoseGuider
|
20 |
from src.models.unet_2d_condition import UNet2DConditionModel
|
21 |
from src.models.unet_3d import UNet3DConditionModel
|
22 |
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
|
23 |
-
from src.utils.util import save_videos_grid
|
24 |
|
25 |
from src.audio_models.model import Audio2MeshModel
|
26 |
-
from src.utils.audio_util import prepare_audio_feature
|
27 |
from src.utils.mp_utils import LMKExtractor
|
28 |
from src.utils.draw_util import FaceMeshVisualizer
|
29 |
-
from src.utils.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
|
|
|
|
34 |
|
35 |
-
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
weight_dtype = torch.float16
|
39 |
-
else:
|
40 |
-
weight_dtype = torch.float32
|
41 |
|
42 |
-
|
43 |
-
# prepare model
|
44 |
-
a2m_model = Audio2MeshModel(audio_infer_config['a2m_model'])
|
45 |
-
a2m_model.load_state_dict(torch.load(audio_infer_config['pretrained_model']['a2m_ckpt']), strict=False)
|
46 |
-
a2m_model.cuda().eval()
|
47 |
-
|
48 |
-
vae = AutoencoderKL.from_pretrained(
|
49 |
-
config.pretrained_vae_path,
|
50 |
-
).to("cuda", dtype=weight_dtype)
|
51 |
-
|
52 |
-
reference_unet = UNet2DConditionModel.from_pretrained(
|
53 |
-
config.pretrained_base_model_path,
|
54 |
-
subfolder="unet",
|
55 |
-
).to(dtype=weight_dtype, device="cuda")
|
56 |
-
|
57 |
-
inference_config_path = config.inference_config
|
58 |
-
infer_config = OmegaConf.load(inference_config_path)
|
59 |
-
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
|
60 |
-
config.pretrained_base_model_path,
|
61 |
-
config.motion_module_path,
|
62 |
-
subfolder="unet",
|
63 |
-
unet_additional_kwargs=infer_config.unet_additional_kwargs,
|
64 |
-
).to(dtype=weight_dtype, device="cuda")
|
65 |
-
|
66 |
-
|
67 |
-
pose_guider = PoseGuider(noise_latent_channels=320, use_ca=True).to(device="cuda", dtype=weight_dtype) # not use cross attention
|
68 |
-
|
69 |
-
image_enc = CLIPVisionModelWithProjection.from_pretrained(
|
70 |
-
config.image_encoder_path
|
71 |
-
).to(dtype=weight_dtype, device="cuda")
|
72 |
-
|
73 |
-
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
|
74 |
-
scheduler = DDIMScheduler(**sched_kwargs)
|
75 |
-
|
76 |
-
# load pretrained weights
|
77 |
-
denoising_unet.load_state_dict(
|
78 |
-
torch.load(config.denoising_unet_path, map_location="cpu"),
|
79 |
-
strict=False,
|
80 |
-
)
|
81 |
-
reference_unet.load_state_dict(
|
82 |
-
torch.load(config.reference_unet_path, map_location="cpu"),
|
83 |
-
)
|
84 |
-
pose_guider.load_state_dict(
|
85 |
-
torch.load(config.pose_guider_path, map_location="cpu"),
|
86 |
-
)
|
87 |
-
|
88 |
-
pipe = Pose2VideoPipeline(
|
89 |
-
vae=vae,
|
90 |
-
image_encoder=image_enc,
|
91 |
-
reference_unet=reference_unet,
|
92 |
-
denoising_unet=denoising_unet,
|
93 |
-
pose_guider=pose_guider,
|
94 |
-
scheduler=scheduler,
|
95 |
-
)
|
96 |
-
pipe = pipe.to("cuda", dtype=weight_dtype)
|
|
|
4 |
from pathlib import Path
|
5 |
import numpy as np
|
6 |
import cv2
|
7 |
+
import spaces
|
8 |
+
import shutil
|
9 |
import torch
|
10 |
+
from omegaconf import OmegaConf
|
11 |
+
from PIL import Image
|
12 |
from scipy.spatial.transform import Rotation as R
|
13 |
from scipy.interpolate import interp1d
|
14 |
+
from torchvision import transforms
|
15 |
|
16 |
from diffusers import AutoencoderKL, DDIMScheduler
|
|
|
17 |
from omegaconf import OmegaConf
|
|
|
|
|
18 |
from transformers import CLIPVisionModelWithProjection
|
19 |
|
|
|
20 |
from src.models.pose_guider import PoseGuider
|
21 |
from src.models.unet_2d_condition import UNet2DConditionModel
|
22 |
from src.models.unet_3d import UNet3DConditionModel
|
23 |
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
|
|
|
24 |
|
25 |
from src.audio_models.model import Audio2MeshModel
|
|
|
26 |
from src.utils.mp_utils import LMKExtractor
|
27 |
from src.utils.draw_util import FaceMeshVisualizer
|
28 |
+
from src.utils.util import get_fps, read_frames, save_videos_grid
|
29 |
+
|
30 |
+
from src.utils.audio_util import prepare_audio_feature
|
31 |
+
from src.utils.pose_util import project_points_with_trans, matrix_to_euler_and_translation, euler_and_translation_to_matrix, project_points
|
32 |
+
from src.utils.crop_face_single import crop_face
|
33 |
+
|
34 |
+
class Processer():
|
35 |
+
def __init__(self):
|
36 |
+
self.create_models()
|
37 |
+
|
38 |
+
def create_models(self):
|
39 |
+
|
40 |
+
self.lmk_extractor = LMKExtractor()
|
41 |
+
self.vis = FaceMeshVisualizer(forehead_edge=False)
|
42 |
+
|
43 |
+
config = OmegaConf.load('./configs/prompts/animation_audio.yaml')
|
44 |
+
|
45 |
+
if config.weight_dtype == "fp16":
|
46 |
+
weight_dtype = torch.float16
|
47 |
+
else:
|
48 |
+
weight_dtype = torch.float32
|
49 |
+
|
50 |
+
audio_infer_config = OmegaConf.load(config.audio_inference_config)
|
51 |
+
# prepare model
|
52 |
+
self.a2m_model = Audio2MeshModel(audio_infer_config['a2m_model'])
|
53 |
+
self.a2m_model.load_state_dict(torch.load(audio_infer_config['pretrained_model']['a2m_ckpt']), strict=False)
|
54 |
+
self.a2m_model.cuda().eval()
|
55 |
+
|
56 |
+
self.vae = AutoencoderKL.from_pretrained(
|
57 |
+
config.pretrained_vae_path,
|
58 |
+
).to("cuda", dtype=weight_dtype)
|
59 |
+
|
60 |
+
self.reference_unet = UNet2DConditionModel.from_pretrained(
|
61 |
+
config.pretrained_base_model_path,
|
62 |
+
subfolder="unet",
|
63 |
+
).to(dtype=weight_dtype, device="cuda")
|
64 |
+
|
65 |
+
inference_config_path = config.inference_config
|
66 |
+
infer_config = OmegaConf.load(inference_config_path)
|
67 |
+
self.denoising_unet = UNet3DConditionModel.from_pretrained_2d(
|
68 |
+
config.pretrained_base_model_path,
|
69 |
+
config.motion_module_path,
|
70 |
+
subfolder="unet",
|
71 |
+
unet_additional_kwargs=infer_config.unet_additional_kwargs,
|
72 |
+
).to(dtype=weight_dtype, device="cuda")
|
73 |
+
|
74 |
+
self.pose_guider = PoseGuider(noise_latent_channels=320, use_ca=True).to(device="cuda", dtype=weight_dtype) # not use cross attention
|
75 |
+
|
76 |
+
self.image_enc = CLIPVisionModelWithProjection.from_pretrained(
|
77 |
+
config.image_encoder_path
|
78 |
+
).to(dtype=weight_dtype, device="cuda")
|
79 |
+
|
80 |
+
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
|
81 |
+
self.scheduler = DDIMScheduler(**sched_kwargs)
|
82 |
+
|
83 |
+
# load pretrained weights
|
84 |
+
self.denoising_unet.load_state_dict(
|
85 |
+
torch.load(config.denoising_unet_path, map_location="cpu"),
|
86 |
+
strict=False,
|
87 |
+
)
|
88 |
+
self.reference_unet.load_state_dict(
|
89 |
+
torch.load(config.reference_unet_path, map_location="cpu"),
|
90 |
+
)
|
91 |
+
self.pose_guider.load_state_dict(
|
92 |
+
torch.load(config.pose_guider_path, map_location="cpu"),
|
93 |
+
)
|
94 |
+
|
95 |
+
self.pipe = Pose2VideoPipeline(
|
96 |
+
vae=self.vae,
|
97 |
+
image_encoder=self.image_enc,
|
98 |
+
reference_unet=self.reference_unet,
|
99 |
+
denoising_unet=self.denoising_unet,
|
100 |
+
pose_guider=self.pose_guider,
|
101 |
+
scheduler=self.scheduler,
|
102 |
+
)
|
103 |
+
self.pipe = self.pipe.to("cuda", dtype=weight_dtype)
|
104 |
+
|
105 |
+
|
106 |
+
@spaces.GPU
|
107 |
+
def audio2video(self, input_audio, ref_img, headpose_video=None, size=512, steps=25, length=150, seed=42):
|
108 |
+
fps = 30
|
109 |
+
cfg = 3.5
|
110 |
+
|
111 |
+
config = OmegaConf.load('./configs/prompts/animation_audio.yaml')
|
112 |
+
audio_infer_config = OmegaConf.load(config.audio_inference_config)
|
113 |
+
generator = torch.manual_seed(seed)
|
114 |
+
|
115 |
+
width, height = size, size
|
116 |
+
|
117 |
+
date_str = datetime.now().strftime("%Y%m%d")
|
118 |
+
time_str = datetime.now().strftime("%H%M")
|
119 |
+
save_dir_name = f"{time_str}--seed_{seed}-{size}x{size}"
|
120 |
+
|
121 |
+
save_dir = Path(f"output/{date_str}/{save_dir_name}")
|
122 |
+
save_dir.mkdir(exist_ok=True, parents=True)
|
123 |
+
|
124 |
+
ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
|
125 |
+
ref_image_np = crop_face(ref_image_np, self.lmk_extractor)
|
126 |
+
if ref_image_np is None:
|
127 |
+
return None, Image.fromarray(ref_img)
|
128 |
+
|
129 |
+
ref_image_np = cv2.resize(ref_image_np, (size, size))
|
130 |
+
ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB))
|
131 |
+
|
132 |
+
face_result = self.lmk_extractor(ref_image_np)
|
133 |
+
if face_result is None:
|
134 |
+
return None, ref_image_pil
|
135 |
+
|
136 |
+
lmks = face_result['lmks'].astype(np.float32)
|
137 |
+
ref_pose = self.vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True)
|
138 |
+
|
139 |
+
sample = prepare_audio_feature(input_audio, wav2vec_model_path=audio_infer_config['a2m_model']['model_path'])
|
140 |
+
sample['audio_feature'] = torch.from_numpy(sample['audio_feature']).float().cuda()
|
141 |
+
sample['audio_feature'] = sample['audio_feature'].unsqueeze(0)
|
142 |
+
|
143 |
+
# inference
|
144 |
+
pred = self.a2m_model.infer(sample['audio_feature'], sample['seq_len'])
|
145 |
+
pred = pred.squeeze().detach().cpu().numpy()
|
146 |
+
pred = pred.reshape(pred.shape[0], -1, 3)
|
147 |
+
pred = pred + face_result['lmks3d']
|
148 |
+
|
149 |
+
if headpose_video is not None:
|
150 |
+
pose_seq = get_headpose_temp(headpose_video, self.lmk_extractor)
|
151 |
+
else:
|
152 |
+
pose_seq = np.load(config['pose_temp'])
|
153 |
+
mirrored_pose_seq = np.concatenate((pose_seq, pose_seq[-2:0:-1]), axis=0)
|
154 |
+
cycled_pose_seq = np.tile(mirrored_pose_seq, (sample['seq_len'] // len(mirrored_pose_seq) + 1, 1))[:sample['seq_len']]
|
155 |
+
|
156 |
+
# project 3D mesh to 2D landmark
|
157 |
+
projected_vertices = project_points(pred, face_result['trans_mat'], cycled_pose_seq, [height, width])
|
158 |
+
|
159 |
+
pose_images = []
|
160 |
+
for i, verts in enumerate(projected_vertices):
|
161 |
+
lmk_img = self.vis.draw_landmarks((width, height), verts, normed=False)
|
162 |
+
pose_images.append(lmk_img)
|
163 |
+
|
164 |
+
pose_list = []
|
165 |
+
pose_tensor_list = []
|
166 |
+
|
167 |
+
pose_transform = transforms.Compose(
|
168 |
+
[transforms.Resize((height, width)), transforms.ToTensor()]
|
169 |
+
)
|
170 |
+
args_L = len(pose_images) if length==0 or length > len(pose_images) else length
|
171 |
+
args_L = min(args_L, 300)
|
172 |
+
for pose_image_np in pose_images[: args_L]:
|
173 |
+
pose_image_pil = Image.fromarray(cv2.cvtColor(pose_image_np, cv2.COLOR_BGR2RGB))
|
174 |
+
pose_tensor_list.append(pose_transform(pose_image_pil))
|
175 |
+
pose_image_np = cv2.resize(pose_image_np, (width, height))
|
176 |
+
pose_list.append(pose_image_np)
|
177 |
+
|
178 |
+
pose_list = np.array(pose_list)
|
179 |
+
|
180 |
+
video_length = len(pose_tensor_list)
|
181 |
+
|
182 |
+
video = self.pipe(
|
183 |
+
ref_image_pil,
|
184 |
+
pose_list,
|
185 |
+
ref_pose,
|
186 |
+
width,
|
187 |
+
height,
|
188 |
+
video_length,
|
189 |
+
steps,
|
190 |
+
cfg,
|
191 |
+
generator=generator,
|
192 |
+
).videos
|
193 |
+
|
194 |
+
save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio.mp4"
|
195 |
+
save_videos_grid(
|
196 |
+
video,
|
197 |
+
save_path,
|
198 |
+
n_rows=1,
|
199 |
+
fps=fps,
|
200 |
+
)
|
201 |
+
|
202 |
+
stream = ffmpeg.input(save_path)
|
203 |
+
audio = ffmpeg.input(input_audio)
|
204 |
+
ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run()
|
205 |
+
os.remove(save_path)
|
206 |
+
|
207 |
+
return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil
|
208 |
+
|
209 |
+
@spaces.GPU
|
210 |
+
def video2video(self, ref_img, source_video, size=512, steps=25, length=150, seed=42):
|
211 |
+
cfg = 3.5
|
212 |
+
|
213 |
+
generator = torch.manual_seed(seed)
|
214 |
+
width, height = size, size
|
215 |
+
|
216 |
+
date_str = datetime.now().strftime("%Y%m%d")
|
217 |
+
time_str = datetime.now().strftime("%H%M")
|
218 |
+
save_dir_name = f"{time_str}--seed_{seed}-{size}x{size}"
|
219 |
+
|
220 |
+
save_dir = Path(f"output/{date_str}/{save_dir_name}")
|
221 |
+
save_dir.mkdir(exist_ok=True, parents=True)
|
222 |
+
|
223 |
+
ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
|
224 |
+
ref_image_np = crop_face(ref_image_np, self.lmk_extractor)
|
225 |
+
if ref_image_np is None:
|
226 |
+
return None, Image.fromarray(ref_img)
|
227 |
+
|
228 |
+
ref_image_np = cv2.resize(ref_image_np, (size, size))
|
229 |
+
ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB))
|
230 |
+
|
231 |
+
face_result = self.lmk_extractor(ref_image_np)
|
232 |
+
if face_result is None:
|
233 |
+
return None, ref_image_pil
|
234 |
+
|
235 |
+
lmks = face_result['lmks'].astype(np.float32)
|
236 |
+
ref_pose = self.vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True)
|
237 |
+
|
238 |
+
source_images = read_frames(source_video)
|
239 |
+
src_fps = get_fps(source_video)
|
240 |
+
pose_transform = transforms.Compose(
|
241 |
+
[transforms.Resize((height, width)), transforms.ToTensor()]
|
242 |
+
)
|
243 |
+
|
244 |
+
step = 1
|
245 |
+
if src_fps == 60:
|
246 |
+
src_fps = 30
|
247 |
+
step = 2
|
248 |
+
|
249 |
+
pose_trans_list = []
|
250 |
+
verts_list = []
|
251 |
+
bs_list = []
|
252 |
+
src_tensor_list = []
|
253 |
+
args_L = len(source_images) if length==0 or length*step > len(source_images) else length*step
|
254 |
+
args_L = min(args_L, 300*step)
|
255 |
+
for src_image_pil in source_images[: args_L: step]:
|
256 |
+
src_tensor_list.append(pose_transform(src_image_pil))
|
257 |
+
src_img_np = cv2.cvtColor(np.array(src_image_pil), cv2.COLOR_RGB2BGR)
|
258 |
+
frame_height, frame_width, _ = src_img_np.shape
|
259 |
+
src_img_result = self.lmk_extractor(src_img_np)
|
260 |
+
if src_img_result is None:
|
261 |
+
break
|
262 |
+
pose_trans_list.append(src_img_result['trans_mat'])
|
263 |
+
verts_list.append(src_img_result['lmks3d'])
|
264 |
+
bs_list.append(src_img_result['bs'])
|
265 |
+
|
266 |
+
trans_mat_arr = np.array(pose_trans_list)
|
267 |
+
verts_arr = np.array(verts_list)
|
268 |
+
bs_arr = np.array(bs_list)
|
269 |
+
min_bs_idx = np.argmin(bs_arr.sum(1))
|
270 |
+
|
271 |
+
# compute delta pose
|
272 |
+
pose_arr = np.zeros([trans_mat_arr.shape[0], 6])
|
273 |
+
|
274 |
+
for i in range(pose_arr.shape[0]):
|
275 |
+
euler_angles, translation_vector = matrix_to_euler_and_translation(trans_mat_arr[i]) # real pose of source
|
276 |
+
pose_arr[i, :3] = euler_angles
|
277 |
+
pose_arr[i, 3:6] = translation_vector
|
278 |
+
|
279 |
+
init_tran_vec = face_result['trans_mat'][:3, 3] # init translation of tgt
|
280 |
+
pose_arr[:, 3:6] = pose_arr[:, 3:6] - pose_arr[0, 3:6] + init_tran_vec # (relative translation of source) + (init translation of tgt)
|
281 |
+
|
282 |
+
pose_arr_smooth = smooth_pose_seq(pose_arr, window_size=3)
|
283 |
+
pose_mat_smooth = [euler_and_translation_to_matrix(pose_arr_smooth[i][:3], pose_arr_smooth[i][3:6]) for i in range(pose_arr_smooth.shape[0])]
|
284 |
+
pose_mat_smooth = np.array(pose_mat_smooth)
|
285 |
+
|
286 |
+
# face retarget
|
287 |
+
verts_arr = verts_arr - verts_arr[min_bs_idx] + face_result['lmks3d']
|
288 |
+
# project 3D mesh to 2D landmark
|
289 |
+
projected_vertices = project_points_with_trans(verts_arr, pose_mat_smooth, [frame_height, frame_width])
|
290 |
+
|
291 |
+
pose_list = []
|
292 |
+
for i, verts in enumerate(projected_vertices):
|
293 |
+
lmk_img = self.vis.draw_landmarks((frame_width, frame_height), verts, normed=False)
|
294 |
+
pose_image_np = cv2.resize(lmk_img, (width, height))
|
295 |
+
pose_list.append(pose_image_np)
|
296 |
+
|
297 |
+
pose_list = np.array(pose_list)
|
298 |
+
|
299 |
+
video_length = len(pose_list)
|
300 |
+
|
301 |
+
video = self.pipe(
|
302 |
+
ref_image_pil,
|
303 |
+
pose_list,
|
304 |
+
ref_pose,
|
305 |
+
width,
|
306 |
+
height,
|
307 |
+
video_length,
|
308 |
+
steps,
|
309 |
+
cfg,
|
310 |
+
generator=generator,
|
311 |
+
).videos
|
312 |
+
|
313 |
+
save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio.mp4"
|
314 |
+
save_videos_grid(
|
315 |
+
video,
|
316 |
+
save_path,
|
317 |
+
n_rows=1,
|
318 |
+
fps=src_fps,
|
319 |
+
)
|
320 |
+
|
321 |
+
audio_output = f'{save_dir}/audio_from_video.aac'
|
322 |
+
# extract audio
|
323 |
+
try:
|
324 |
+
ffmpeg.input(source_video).output(audio_output, acodec='copy').run()
|
325 |
+
# merge audio and video
|
326 |
+
stream = ffmpeg.input(save_path)
|
327 |
+
audio = ffmpeg.input(audio_output)
|
328 |
+
ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run()
|
329 |
+
|
330 |
+
os.remove(save_path)
|
331 |
+
os.remove(audio_output)
|
332 |
+
except:
|
333 |
+
shutil.move(
|
334 |
+
save_path,
|
335 |
+
save_path.replace('_noaudio.mp4', '.mp4')
|
336 |
+
)
|
337 |
+
|
338 |
+
return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil
|
339 |
+
|
340 |
+
|
341 |
+
def matrix_to_euler_and_translation(matrix):
|
342 |
+
rotation_matrix = matrix[:3, :3]
|
343 |
+
translation_vector = matrix[:3, 3]
|
344 |
+
rotation = R.from_matrix(rotation_matrix)
|
345 |
+
euler_angles = rotation.as_euler('xyz', degrees=True)
|
346 |
+
return euler_angles, translation_vector
|
347 |
+
|
348 |
+
|
349 |
+
def smooth_pose_seq(pose_seq, window_size=5):
|
350 |
+
smoothed_pose_seq = np.zeros_like(pose_seq)
|
351 |
+
|
352 |
+
for i in range(len(pose_seq)):
|
353 |
+
start = max(0, i - window_size // 2)
|
354 |
+
end = min(len(pose_seq), i + window_size // 2 + 1)
|
355 |
+
smoothed_pose_seq[i] = np.mean(pose_seq[start:end], axis=0)
|
356 |
+
|
357 |
+
return smoothed_pose_seq
|
358 |
+
|
359 |
+
def get_headpose_temp(input_video, lmk_extractor):
|
360 |
+
cap = cv2.VideoCapture(input_video)
|
361 |
+
|
362 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
363 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
364 |
+
|
365 |
+
trans_mat_list = []
|
366 |
+
while cap.isOpened():
|
367 |
+
ret, frame = cap.read()
|
368 |
+
if not ret:
|
369 |
+
break
|
370 |
+
|
371 |
+
result = lmk_extractor(frame)
|
372 |
+
trans_mat_list.append(result['trans_mat'].astype(np.float32))
|
373 |
+
cap.release()
|
374 |
+
|
375 |
+
trans_mat_arr = np.array(trans_mat_list)
|
376 |
+
|
377 |
+
# compute delta pose
|
378 |
+
trans_mat_inv_frame_0 = np.linalg.inv(trans_mat_arr[0])
|
379 |
+
pose_arr = np.zeros([trans_mat_arr.shape[0], 6])
|
380 |
|
381 |
+
for i in range(pose_arr.shape[0]):
|
382 |
+
pose_mat = trans_mat_inv_frame_0 @ trans_mat_arr[i]
|
383 |
+
euler_angles, translation_vector = matrix_to_euler_and_translation(pose_mat)
|
384 |
+
pose_arr[i, :3] = euler_angles
|
385 |
+
pose_arr[i, 3:6] = translation_vector
|
386 |
|
387 |
+
# interpolate to 30 fps
|
388 |
+
new_fps = 30
|
389 |
+
old_time = np.linspace(0, total_frames / fps, total_frames)
|
390 |
+
new_time = np.linspace(0, total_frames / fps, int(total_frames * new_fps / fps))
|
391 |
|
392 |
+
pose_arr_interp = np.zeros((len(new_time), 6))
|
393 |
+
for i in range(6):
|
394 |
+
interp_func = interp1d(old_time, pose_arr[:, i])
|
395 |
+
pose_arr_interp[:, i] = interp_func(new_time)
|
396 |
|
397 |
+
pose_arr_smooth = smooth_pose_seq(pose_arr_interp)
|
|
|
|
|
|
|
398 |
|
399 |
+
return pose_arr_smooth
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|