Spaces:
Sleeping
Sleeping
File size: 9,777 Bytes
0aca33c e1724e4 0aca33c 0044085 fb881f7 0aca33c 58318c4 0aca33c 2e20bf5 c816679 58318c4 2e20bf5 58318c4 2e20bf5 58318c4 2e20bf5 58318c4 2e20bf5 58318c4 2e20bf5 58318c4 2e20bf5 58318c4 2e20bf5 58318c4 2e20bf5 58318c4 c816679 e1724e4 2e20bf5 eab7f9b c816679 eab7f9b e1724e4 58318c4 c816679 2e20bf5 58318c4 2e20bf5 58318c4 e1724e4 2e20bf5 e1724e4 2e20bf5 58318c4 c816679 58318c4 2e20bf5 c816679 0aca33c 58318c4 2e20bf5 58318c4 c816679 58318c4 e1724e4 58318c4 2e20bf5 e1724e4 58318c4 2e20bf5 e1724e4 2e20bf5 58318c4 2e20bf5 58318c4 c816679 2e20bf5 58318c4 2e20bf5 e1724e4 eab7f9b 2e20bf5 58318c4 0aca33c 2e20bf5 0aca33c e1724e4 bf63770 0aca33c bf63770 e1724e4 c816679 58318c4 c816679 0aca33c 2e20bf5 58318c4 0aca33c 58318c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import gradio as gr
import torch
import concurrent.futures
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the model and tokenizer (using GPT-2 as an example)
model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
model.eval()
torch.set_num_threads(2)
def min_p_sampling(logits, pbase=0.1):
"""
Perform min-p sampling on the logits. As described in
https://arxiv.org/abs/2407.01082
Args:
logits (torch.Tensor): 1D tensor of logits for the next token.
pbase (float): Base probability to scale pmax.
Returns:
int: The sampled token index.
"""
# Convert logits to probabilities.
probs = torch.softmax(logits, dim=-1)
# 1. Find maximum probability.
pmax = probs.max()
# 2. Compute the dynamic threshold.
pscaled = pbase * pmax
# 3. Create a mask of tokens with probability >= pscaled.
mask = probs >= pscaled
# In the unlikely event that no token meets the threshold, use the full distribution.
if mask.sum() == 0:
mask = torch.ones_like(probs, dtype=torch.bool)
probs_filtered = probs * mask.float()
# 4. Normalize and sample.
probs_normalized = probs_filtered / probs_filtered.sum()
sampled_index = torch.multinomial(probs_normalized, num_samples=1)
return sampled_index.item()
def generate_laconic_completion(prompt: str, n: int = 5, max_length: int = 100):
# generate n completions greedily and return the shortest one
with torch.no_grad():
# Encode the prompt and get the attention mask.
encoded = tokenizer(prompt, return_tensors="pt")
input_ids = encoded["input_ids"]
attention_mask = encoded["attention_mask"]
# Generate the output.
outputs = model.generate(
input_ids,
attention_mask=attention_mask,
max_length=max_length,
num_return_sequences=n,
do_sample=True,
)
completions = [
tokenizer.decode(output, skip_special_tokens=True) for output in outputs
]
return min(completions, key=len)
def generate_with_confidence(input_ids, max_length):
"""
Generate a sequence using greedy decoding while returning the scores.
"""
outputs = model.generate(
input_ids,
max_length=max_length,
do_sample=False,
output_scores=True,
return_dict_in_generate=True,
)
return outputs
def compute_answer_confidence(outputs):
"""
Compute the answer confidence over the generated tokens.
For each generated token, compute the difference between the top-1 and top-2 logits.
Returns the average difference.
"""
diffs = []
for score in outputs.scores:
# Get top-2 logit values
top2 = torch.topk(score[0], 2)
diff = top2.values[0] - top2.values[1]
diffs.append(diff.item())
return sum(diffs) / len(diffs) if diffs else 0.0
def cot_decoding(prompt, k=5, max_length=100):
"""
Perform Chain-of-Thought (CoT) decoding by exploring top-k alternative paths.
"""
input_ids = tokenizer.encode(prompt, return_tensors="pt")
# Get logits for the next token
with torch.no_grad():
outputs = model(input_ids)
logits = outputs.logits[0, -1, :]
# Get top-k candidate tokens
topk = torch.topk(logits, k)
candidate_tokens = topk.indices
paths = []
for token in candidate_tokens:
# Append the candidate token to the prompt
new_input_ids = torch.cat([input_ids, token.view(1, 1)], dim=1)
# Generate a full sequence with output scores
gen_outputs = generate_with_confidence(
new_input_ids, max_length=new_input_ids.shape[1] + max_length
)
# Decode the generated sequence
generated_text = tokenizer.decode(
gen_outputs.sequences[0], skip_special_tokens=True
)
# Compute answer confidence
confidence = compute_answer_confidence(gen_outputs)
paths.append({"text": generated_text, "confidence": confidence})
return max(paths, key=lambda x: x["confidence"])["text"]
def generate_completion(prompt, strategy, params):
"""
Generate a complete answer using model.generate with specified parameters.
"""
with torch.no_grad():
# Encode the prompt and get the attention mask.
encoded = tokenizer(prompt, return_tensors="pt")
input_ids = encoded["input_ids"]
attention_mask = encoded["attention_mask"]
# Generate the output.
output_ids = model.generate(
input_ids, attention_mask=attention_mask, max_length=100, **params
)
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
def generate_min_p_completion(prompt, pbase=0.1, max_length=100):
input_ids = tokenizer.encode(prompt, return_tensors="pt")
past = None
with torch.no_grad():
for _ in range(max_length - input_ids.size(1)):
# Only pass the last token if past is available
outputs = (
model(input_ids[:, -1:], past_key_values=past)
if past is not None
else model(input_ids)
)
past = outputs.past_key_values
logits = outputs.logits[:, -1, :]
next_token = min_p_sampling(logits, pbase=pbase)
input_ids = torch.cat([input_ids, torch.tensor([[next_token]])], dim=-1)
if next_token == tokenizer.eos_token_id:
break
return tokenizer.decode(input_ids[0], skip_special_tokens=True)
def generate_all(prompt):
"""
Run multiple decoding strategies concurrently and yield updates as each completes.
"""
# Define each decoding strategy and its parameters.
methods = {
"Greedy": {"type": "default", "params": {"do_sample": False}},
"Top-k Sampling": {
"type": "default",
"params": {"do_sample": True, "top_k": 100},
},
"Top-p Sampling": {
"type": "default",
"params": {"do_sample": True, "top_p": 0.95},
},
"Beam Search": {
"type": "default",
"params": {"num_beams": 5, "early_stopping": True},
},
"Eta Sampling": {
"type": "default",
"params": {"do_sample": True, "eta_cutoff": 0.3},
},
"Epsilon Sampling": {
"type": "default",
"params": {"do_sample": True, "epsilon_cutoff": 0.2},
},
"Min-p Sampling": {"type": "min_p", "pbase": 0.1},
"laconic": {
"type": "default",
"params": {"do_sample": True, "num_return_sequences": 5},
},
"COT Decoding": {
"type": "cot_decoding",
"params": {"k": 5, "max_length": 100},
},
}
# Define the order for display.
method_order = [
"Greedy",
"Top-k Sampling",
"Top-p Sampling",
"Beam Search",
"Min-p Sampling",
"Eta Sampling",
"Epsilon Sampling",
"laconic",
"COT Decoding",
]
results = {method: None for method in methods}
# Yield an initial placeholder state.
yield tuple("Processing..." for _ in method_order)
# Use a thread pool to run each generation concurrently.
with concurrent.futures.ThreadPoolExecutor() as executor:
future_to_method = {}
for method, info in methods.items():
if info["type"] == "default":
future = executor.submit(
generate_completion, prompt, method, info["params"]
)
elif info["type"] == "min_p":
future = executor.submit(
generate_min_p_completion, prompt, info["pbase"]
)
elif method == "laconic":
future = executor.submit(generate_laconic_completion, prompt)
elif method == "COT Decoding":
future = executor.submit(cot_decoding, prompt, **info["params"])
future_to_method[future] = method
# As each future completes, update its result and yield the current state.
for future in concurrent.futures.as_completed(future_to_method):
method = future_to_method[future]
try:
result = future.result()
except Exception as exc:
result = f"Error: {exc}"
results[method] = result
# Yield the results in the pre-defined order; pending methods show "Processing..."
yield tuple(
results[m] if results[m] is not None else "Processing..."
for m in method_order
)
# Create the Gradio interface.
interface = gr.Interface(
fn=generate_all,
inputs=gr.Textbox(lines=3, placeholder="Enter your prompt here...", label="Prompt"),
outputs=[
gr.Textbox(label="Greedy"),
gr.Textbox(label="Top-k Sampling"),
gr.Textbox(label="Top-p Sampling"),
gr.Textbox(label="Beam Search"),
gr.Textbox(label="Min-p Sampling (as in https://arxiv.org/abs/2407.01082)"),
gr.Textbox(label="Eta Sampling"),
gr.Textbox(label="Epsilon Sampling"),
gr.Textbox(
label="laconic decoding (by Alex Dimakis, 2025, search for twitter thread)"
),
gr.Textbox(
label="COT Decoding (Chain-of-Thought Reasoning without Prompting, Wang, Zhou, 2024)"
),
],
title="Decoding Methods Comparison",
description="Each decoding method's final answer is printed as soon as it is done. Model used: GPT-2.",
)
if __name__ == "__main__":
interface.launch()
|