Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
|
4 |
+
# Load your model (using GPT-2 as an example)
|
5 |
+
model_name = "gpt2"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
+
|
9 |
+
def generate_completions(prompt):
|
10 |
+
# Define decoding strategies with corresponding parameters
|
11 |
+
strategies = {
|
12 |
+
"Greedy": {"do_sample": False},
|
13 |
+
"Beam Search": {"num_beams": 5, "early_stopping": True},
|
14 |
+
"Top-k Sampling": {"do_sample": True, "top_k": 50},
|
15 |
+
"Top-p Sampling": {"do_sample": True, "top_p": 0.95}
|
16 |
+
}
|
17 |
+
|
18 |
+
results = {}
|
19 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
20 |
+
|
21 |
+
for strategy, params in strategies.items():
|
22 |
+
# Generate output using the specific strategy
|
23 |
+
output_ids = model.generate(input_ids, max_length=50, **params)
|
24 |
+
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
25 |
+
results[strategy] = output_text
|
26 |
+
|
27 |
+
return results["Greedy"], results["Beam Search"], results["Top-k Sampling"], results["Top-p Sampling"]
|
28 |
+
|
29 |
+
# Define the Gradio interface
|
30 |
+
interface = gr.Interface(
|
31 |
+
fn=generate_completions,
|
32 |
+
inputs=gr.inputs.Textbox(lines=3, placeholder="Enter your prompt here...", label="Prompt"),
|
33 |
+
outputs=[
|
34 |
+
gr.outputs.Textbox(label="Greedy"),
|
35 |
+
gr.outputs.Textbox(label="Beam Search"),
|
36 |
+
gr.outputs.Textbox(label="Top-k Sampling"),
|
37 |
+
gr.outputs.Textbox(label="Top-p Sampling"),
|
38 |
+
],
|
39 |
+
title="LLM Decoding Strategies Comparison",
|
40 |
+
description="Enter a prompt to see how different decoding strategies affect the output of a language model."
|
41 |
+
)
|
42 |
+
|
43 |
+
if __name__ == "__main__":
|
44 |
+
interface.launch()
|