Spaces:
Runtime error
Runtime error
import streamlit as st | |
st.set_page_config(layout="wide") | |
from diffsynth import SDVideoPipelineRunner | |
import os | |
import numpy as np | |
def load_model_list(folder): | |
file_list = os.listdir(folder) | |
file_list = [i for i in file_list if i.endswith(".safetensors") or i.endswith(".pth") or i.endswith(".ckpt")] | |
file_list = sorted(file_list) | |
return file_list | |
def match_processor_id(model_name, supported_processor_id_list): | |
sorted_processor_id = [i[1] for i in sorted([(-len(i), i) for i in supported_processor_id_list])] | |
for processor_id in sorted_processor_id: | |
if processor_id in model_name: | |
return supported_processor_id_list.index(processor_id) + 1 | |
return 0 | |
config = { | |
"models": { | |
"model_list": [], | |
"textual_inversion_folder": "models/textual_inversion", | |
"device": "cuda", | |
"lora_alphas": [], | |
"controlnet_units": [] | |
}, | |
"data": { | |
"input_frames": None, | |
"controlnet_frames": [], | |
"output_folder": "output", | |
"fps": 60 | |
}, | |
"pipeline": { | |
"seed": 0, | |
"pipeline_inputs": {} | |
} | |
} | |
with st.expander("Model", expanded=True): | |
stable_diffusion_ckpt = st.selectbox("Stable Diffusion", ["None"] + load_model_list("models/stable_diffusion")) | |
if stable_diffusion_ckpt != "None": | |
config["models"]["model_list"].append(os.path.join("models/stable_diffusion", stable_diffusion_ckpt)) | |
animatediff_ckpt = st.selectbox("AnimateDiff", ["None"] + load_model_list("models/AnimateDiff")) | |
if animatediff_ckpt != "None": | |
config["models"]["model_list"].append(os.path.join("models/AnimateDiff", animatediff_ckpt)) | |
column_lora, column_lora_alpha = st.columns([2, 1]) | |
with column_lora: | |
sd_lora_ckpt = st.selectbox("LoRA", ["None"] + load_model_list("models/lora")) | |
with column_lora_alpha: | |
lora_alpha = st.slider("LoRA Alpha", min_value=-4.0, max_value=4.0, value=1.0, step=0.1) | |
if sd_lora_ckpt != "None": | |
config["models"]["model_list"].append(os.path.join("models/lora", sd_lora_ckpt)) | |
config["models"]["lora_alphas"].append(lora_alpha) | |
with st.expander("Data", expanded=True): | |
with st.container(border=True): | |
input_video = st.text_input("Input Video File Path (e.g., data/your_video.mp4)", value="") | |
column_height, column_width, column_start_frame_index, column_end_frame_index = st.columns([2, 2, 1, 1]) | |
with column_height: | |
height = st.select_slider("Height", options=[256, 512, 768, 1024, 1536, 2048], value=1024) | |
with column_width: | |
width = st.select_slider("Width", options=[256, 512, 768, 1024, 1536, 2048], value=1024) | |
with column_start_frame_index: | |
start_frame_id = st.number_input("Start Frame id", value=0) | |
with column_end_frame_index: | |
end_frame_id = st.number_input("End Frame id", value=16) | |
if input_video != "": | |
config["data"]["input_frames"] = { | |
"video_file": input_video, | |
"image_folder": None, | |
"height": height, | |
"width": width, | |
"start_frame_id": start_frame_id, | |
"end_frame_id": end_frame_id | |
} | |
with st.container(border=True): | |
output_video = st.text_input("Output Video File Path (e.g., data/a_folder_to_save_something)", value="output") | |
fps = st.number_input("FPS", value=60) | |
config["data"]["output_folder"] = output_video | |
config["data"]["fps"] = fps | |
with st.expander("ControlNet Units", expanded=True): | |
supported_processor_id_list = ["canny", "depth", "softedge", "lineart", "lineart_anime", "openpose", "tile"] | |
controlnet_units = st.tabs(["ControlNet Unit 0", "ControlNet Unit 1", "ControlNet Unit 2"]) | |
for controlnet_id in range(len(controlnet_units)): | |
with controlnet_units[controlnet_id]: | |
controlnet_ckpt = st.selectbox("ControlNet", ["None"] + load_model_list("models/ControlNet"), | |
key=f"controlnet_ckpt_{controlnet_id}") | |
processor_id = st.selectbox("Processor", ["None"] + supported_processor_id_list, | |
index=match_processor_id(controlnet_ckpt, supported_processor_id_list), | |
disabled=controlnet_ckpt == "None", key=f"processor_id_{controlnet_id}") | |
controlnet_scale = st.slider("Scale", min_value=0.0, max_value=1.0, step=0.01, value=0.5, | |
disabled=controlnet_ckpt == "None", key=f"controlnet_scale_{controlnet_id}") | |
use_input_video_as_controlnet_input = st.checkbox("Use input video as ControlNet input", value=True, | |
disabled=controlnet_ckpt == "None", | |
key=f"use_input_video_as_controlnet_input_{controlnet_id}") | |
if not use_input_video_as_controlnet_input: | |
controlnet_input_video = st.text_input("ControlNet Input Video File Path", value="", | |
disabled=controlnet_ckpt == "None", key=f"controlnet_input_video_{controlnet_id}") | |
column_height, column_width, column_start_frame_index, column_end_frame_index = st.columns([2, 2, 1, 1]) | |
with column_height: | |
height = st.select_slider("Height", options=[256, 512, 768, 1024, 1536, 2048], value=1024, | |
disabled=controlnet_ckpt == "None", key=f"controlnet_height_{controlnet_id}") | |
with column_width: | |
width = st.select_slider("Width", options=[256, 512, 768, 1024, 1536, 2048], value=1024, | |
disabled=controlnet_ckpt == "None", key=f"controlnet_width_{controlnet_id}") | |
with column_start_frame_index: | |
start_frame_id = st.number_input("Start Frame id", value=0, | |
disabled=controlnet_ckpt == "None", key=f"controlnet_start_frame_id_{controlnet_id}") | |
with column_end_frame_index: | |
end_frame_id = st.number_input("End Frame id", value=16, | |
disabled=controlnet_ckpt == "None", key=f"controlnet_end_frame_id_{controlnet_id}") | |
if input_video != "": | |
config["data"]["input_video"] = { | |
"video_file": input_video, | |
"image_folder": None, | |
"height": height, | |
"width": width, | |
"start_frame_id": start_frame_id, | |
"end_frame_id": end_frame_id | |
} | |
if controlnet_ckpt != "None": | |
config["models"]["model_list"].append(os.path.join("models/ControlNet", controlnet_ckpt)) | |
config["models"]["controlnet_units"].append({ | |
"processor_id": processor_id, | |
"model_path": os.path.join("models/ControlNet", controlnet_ckpt), | |
"scale": controlnet_scale, | |
}) | |
if use_input_video_as_controlnet_input: | |
config["data"]["controlnet_frames"].append(config["data"]["input_frames"]) | |
else: | |
config["data"]["controlnet_frames"].append({ | |
"video_file": input_video, | |
"image_folder": None, | |
"height": height, | |
"width": width, | |
"start_frame_id": start_frame_id, | |
"end_frame_id": end_frame_id | |
}) | |
with st.container(border=True): | |
with st.expander("Seed", expanded=True): | |
use_fixed_seed = st.checkbox("Use fixed seed", value=False) | |
if use_fixed_seed: | |
seed = st.number_input("Random seed", min_value=0, max_value=10**9, step=1, value=0) | |
else: | |
seed = np.random.randint(0, 10**9) | |
with st.expander("Textual Guidance", expanded=True): | |
prompt = st.text_area("Positive prompt") | |
negative_prompt = st.text_area("Negative prompt") | |
column_cfg_scale, column_clip_skip = st.columns(2) | |
with column_cfg_scale: | |
cfg_scale = st.slider("Classifier-free guidance scale", min_value=1.0, max_value=10.0, value=7.0) | |
with column_clip_skip: | |
clip_skip = st.slider("Clip Skip", min_value=1, max_value=4, value=1) | |
with st.expander("Denoising", expanded=True): | |
column_num_inference_steps, column_denoising_strength = st.columns(2) | |
with column_num_inference_steps: | |
num_inference_steps = st.slider("Inference steps", min_value=1, max_value=100, value=10) | |
with column_denoising_strength: | |
denoising_strength = st.slider("Denoising strength", min_value=0.0, max_value=1.0, value=1.0) | |
with st.expander("Efficiency", expanded=False): | |
animatediff_batch_size = st.slider("Animatediff batch size (sliding window size)", min_value=1, max_value=32, value=16, step=1) | |
animatediff_stride = st.slider("Animatediff stride", | |
min_value=1, | |
max_value=max(2, animatediff_batch_size), | |
value=max(1, animatediff_batch_size // 2), | |
step=1) | |
unet_batch_size = st.slider("UNet batch size", min_value=1, max_value=32, value=1, step=1) | |
controlnet_batch_size = st.slider("ControlNet batch size", min_value=1, max_value=32, value=1, step=1) | |
cross_frame_attention = st.checkbox("Enable Cross-Frame Attention", value=False) | |
config["pipeline"]["seed"] = seed | |
config["pipeline"]["pipeline_inputs"] = { | |
"prompt": prompt, | |
"negative_prompt": negative_prompt, | |
"cfg_scale": cfg_scale, | |
"clip_skip": clip_skip, | |
"denoising_strength": denoising_strength, | |
"num_inference_steps": num_inference_steps, | |
"animatediff_batch_size": animatediff_batch_size, | |
"animatediff_stride": animatediff_stride, | |
"unet_batch_size": unet_batch_size, | |
"controlnet_batch_size": controlnet_batch_size, | |
"cross_frame_attention": cross_frame_attention, | |
} | |
run_button = st.button("☢️Run☢️", type="primary") | |
if run_button: | |
SDVideoPipelineRunner(in_streamlit=True).run(config) | |