File size: 10,542 Bytes
fb4fac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import streamlit as st
st.set_page_config(layout="wide")
from diffsynth import SDVideoPipelineRunner
import os
import numpy as np


def load_model_list(folder):
    file_list = os.listdir(folder)
    file_list = [i for i in file_list if i.endswith(".safetensors") or i.endswith(".pth") or i.endswith(".ckpt")]
    file_list = sorted(file_list)
    return file_list


def match_processor_id(model_name, supported_processor_id_list):
    sorted_processor_id = [i[1] for i in sorted([(-len(i), i) for i in supported_processor_id_list])]
    for processor_id in sorted_processor_id:
        if processor_id in model_name:
            return supported_processor_id_list.index(processor_id) + 1
    return 0


config = {
    "models": {
        "model_list": [],
        "textual_inversion_folder": "models/textual_inversion",
        "device": "cuda",
        "lora_alphas": [],
        "controlnet_units": []
    },
    "data": {
        "input_frames": None,
        "controlnet_frames": [],
        "output_folder": "output",
        "fps": 60
    },
    "pipeline": {
        "seed": 0,
        "pipeline_inputs": {}
    }
}


with st.expander("Model", expanded=True):
    stable_diffusion_ckpt = st.selectbox("Stable Diffusion", ["None"] + load_model_list("models/stable_diffusion"))
    if stable_diffusion_ckpt != "None":
        config["models"]["model_list"].append(os.path.join("models/stable_diffusion", stable_diffusion_ckpt))
    animatediff_ckpt = st.selectbox("AnimateDiff", ["None"] + load_model_list("models/AnimateDiff"))
    if animatediff_ckpt != "None":
        config["models"]["model_list"].append(os.path.join("models/AnimateDiff", animatediff_ckpt))
    column_lora, column_lora_alpha = st.columns([2, 1])
    with column_lora:
        sd_lora_ckpt = st.selectbox("LoRA", ["None"] + load_model_list("models/lora"))
    with column_lora_alpha:
        lora_alpha = st.slider("LoRA Alpha", min_value=-4.0, max_value=4.0, value=1.0, step=0.1)
    if sd_lora_ckpt != "None":
        config["models"]["model_list"].append(os.path.join("models/lora", sd_lora_ckpt))
        config["models"]["lora_alphas"].append(lora_alpha)


with st.expander("Data", expanded=True):
    with st.container(border=True):
        input_video = st.text_input("Input Video File Path (e.g., data/your_video.mp4)", value="")
        column_height, column_width, column_start_frame_index, column_end_frame_index = st.columns([2, 2, 1, 1])
        with column_height:
            height = st.select_slider("Height", options=[256, 512, 768, 1024, 1536, 2048], value=1024)
        with column_width:
            width = st.select_slider("Width", options=[256, 512, 768, 1024, 1536, 2048], value=1024)
        with column_start_frame_index:
            start_frame_id = st.number_input("Start Frame id", value=0)
        with column_end_frame_index:
            end_frame_id = st.number_input("End Frame id", value=16)
        if input_video != "":
            config["data"]["input_frames"] = {
                "video_file": input_video,
                "image_folder": None,
                "height": height,
                "width": width,
                "start_frame_id": start_frame_id,
                "end_frame_id": end_frame_id
            }
    with st.container(border=True):
        output_video = st.text_input("Output Video File Path (e.g., data/a_folder_to_save_something)", value="output")
        fps = st.number_input("FPS", value=60)
        config["data"]["output_folder"] = output_video
        config["data"]["fps"] = fps


with st.expander("ControlNet Units", expanded=True):
    supported_processor_id_list = ["canny", "depth", "softedge", "lineart", "lineart_anime", "openpose", "tile"]
    controlnet_units = st.tabs(["ControlNet Unit 0", "ControlNet Unit 1", "ControlNet Unit 2"])
    for controlnet_id in range(len(controlnet_units)):
        with controlnet_units[controlnet_id]:
            controlnet_ckpt = st.selectbox("ControlNet", ["None"] + load_model_list("models/ControlNet"),
                                        key=f"controlnet_ckpt_{controlnet_id}")
            processor_id = st.selectbox("Processor", ["None"] + supported_processor_id_list,
                                        index=match_processor_id(controlnet_ckpt, supported_processor_id_list),
                                        disabled=controlnet_ckpt == "None", key=f"processor_id_{controlnet_id}")
            controlnet_scale = st.slider("Scale", min_value=0.0, max_value=1.0, step=0.01, value=0.5,
                                        disabled=controlnet_ckpt == "None", key=f"controlnet_scale_{controlnet_id}")
            use_input_video_as_controlnet_input = st.checkbox("Use input video as ControlNet input", value=True,
                                                              disabled=controlnet_ckpt == "None",
                                                              key=f"use_input_video_as_controlnet_input_{controlnet_id}")
            if not use_input_video_as_controlnet_input:
                controlnet_input_video = st.text_input("ControlNet Input Video File Path", value="",
                                            disabled=controlnet_ckpt == "None", key=f"controlnet_input_video_{controlnet_id}")
                column_height, column_width, column_start_frame_index, column_end_frame_index = st.columns([2, 2, 1, 1])
                with column_height:
                    height = st.select_slider("Height", options=[256, 512, 768, 1024, 1536, 2048], value=1024,
                                              disabled=controlnet_ckpt == "None", key=f"controlnet_height_{controlnet_id}")
                with column_width:
                    width = st.select_slider("Width", options=[256, 512, 768, 1024, 1536, 2048], value=1024,
                                              disabled=controlnet_ckpt == "None", key=f"controlnet_width_{controlnet_id}")
                with column_start_frame_index:
                    start_frame_id = st.number_input("Start Frame id", value=0,
                                                     disabled=controlnet_ckpt == "None", key=f"controlnet_start_frame_id_{controlnet_id}")
                with column_end_frame_index:
                    end_frame_id = st.number_input("End Frame id", value=16,
                                                   disabled=controlnet_ckpt == "None", key=f"controlnet_end_frame_id_{controlnet_id}")
                if input_video != "":
                    config["data"]["input_video"] = {
                        "video_file": input_video,
                        "image_folder": None,
                        "height": height,
                        "width": width,
                        "start_frame_id": start_frame_id,
                        "end_frame_id": end_frame_id
                    }
            if controlnet_ckpt != "None":
                config["models"]["model_list"].append(os.path.join("models/ControlNet", controlnet_ckpt))
                config["models"]["controlnet_units"].append({
                    "processor_id": processor_id,
                    "model_path": os.path.join("models/ControlNet", controlnet_ckpt),
                    "scale": controlnet_scale,
                })
                if use_input_video_as_controlnet_input:
                    config["data"]["controlnet_frames"].append(config["data"]["input_frames"])
                else:
                    config["data"]["controlnet_frames"].append({
                        "video_file": input_video,
                        "image_folder": None,
                        "height": height,
                        "width": width,
                        "start_frame_id": start_frame_id,
                        "end_frame_id": end_frame_id
                    })


with st.container(border=True):
    with st.expander("Seed", expanded=True):
        use_fixed_seed = st.checkbox("Use fixed seed", value=False)
        if use_fixed_seed:
            seed = st.number_input("Random seed", min_value=0, max_value=10**9, step=1, value=0)
        else:
            seed = np.random.randint(0, 10**9)
    with st.expander("Textual Guidance", expanded=True):
        prompt = st.text_area("Positive prompt")
        negative_prompt = st.text_area("Negative prompt")
        column_cfg_scale, column_clip_skip = st.columns(2)
        with column_cfg_scale:
            cfg_scale = st.slider("Classifier-free guidance scale", min_value=1.0, max_value=10.0, value=7.0)
        with column_clip_skip:
            clip_skip = st.slider("Clip Skip", min_value=1, max_value=4, value=1)
    with st.expander("Denoising", expanded=True):
        column_num_inference_steps, column_denoising_strength = st.columns(2)
        with column_num_inference_steps:
            num_inference_steps = st.slider("Inference steps", min_value=1, max_value=100, value=10)
        with column_denoising_strength:
            denoising_strength = st.slider("Denoising strength", min_value=0.0, max_value=1.0, value=1.0)
    with st.expander("Efficiency", expanded=False):
        animatediff_batch_size = st.slider("Animatediff batch size (sliding window size)", min_value=1, max_value=32, value=16, step=1)
        animatediff_stride = st.slider("Animatediff stride",
                                       min_value=1,
                                       max_value=max(2, animatediff_batch_size),
                                       value=max(1, animatediff_batch_size // 2),
                                       step=1)
        unet_batch_size = st.slider("UNet batch size", min_value=1, max_value=32, value=1, step=1)
        controlnet_batch_size = st.slider("ControlNet batch size", min_value=1, max_value=32, value=1, step=1)
        cross_frame_attention = st.checkbox("Enable Cross-Frame Attention", value=False)
    config["pipeline"]["seed"] = seed
    config["pipeline"]["pipeline_inputs"] = {
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "cfg_scale": cfg_scale,
        "clip_skip": clip_skip,
        "denoising_strength": denoising_strength,
        "num_inference_steps": num_inference_steps,
        "animatediff_batch_size": animatediff_batch_size,
        "animatediff_stride": animatediff_stride,
        "unet_batch_size": unet_batch_size,
        "controlnet_batch_size": controlnet_batch_size,
        "cross_frame_attention": cross_frame_attention,
    }

run_button = st.button("☢️Run☢️", type="primary")
if run_button:
    SDVideoPipelineRunner(in_streamlit=True).run(config)