Spaces:
Runtime error
Runtime error
import torch, os, io | |
import numpy as np | |
from PIL import Image | |
import streamlit as st | |
st.set_page_config(layout="wide") | |
from streamlit_drawable_canvas import st_canvas | |
from diffsynth.models import ModelManager | |
from diffsynth.pipelines import SDImagePipeline, SDXLImagePipeline, SD3ImagePipeline, HunyuanDiTImagePipeline | |
from diffsynth.data.video import crop_and_resize | |
config = { | |
"Stable Diffusion": { | |
"model_folder": "models/stable_diffusion", | |
"pipeline_class": SDImagePipeline, | |
"fixed_parameters": {} | |
}, | |
"Stable Diffusion XL": { | |
"model_folder": "models/stable_diffusion_xl", | |
"pipeline_class": SDXLImagePipeline, | |
"fixed_parameters": {} | |
}, | |
"Stable Diffusion 3": { | |
"model_folder": "models/stable_diffusion_3", | |
"pipeline_class": SD3ImagePipeline, | |
"fixed_parameters": {} | |
}, | |
"Stable Diffusion XL Turbo": { | |
"model_folder": "models/stable_diffusion_xl_turbo", | |
"pipeline_class": SDXLImagePipeline, | |
"fixed_parameters": { | |
"negative_prompt": "", | |
"cfg_scale": 1.0, | |
"num_inference_steps": 1, | |
"height": 512, | |
"width": 512, | |
} | |
}, | |
"HunyuanDiT": { | |
"model_folder": "models/HunyuanDiT", | |
"pipeline_class": HunyuanDiTImagePipeline, | |
"fixed_parameters": { | |
"height": 1024, | |
"width": 1024, | |
} | |
}, | |
} | |
def load_model_list(model_type): | |
folder = config[model_type]["model_folder"] | |
file_list = [i for i in os.listdir(folder) if i.endswith(".safetensors")] | |
if model_type == "HunyuanDiT": | |
file_list += [i for i in os.listdir(folder) if os.path.isdir(os.path.join(folder, i))] | |
file_list = sorted(file_list) | |
return file_list | |
def release_model(): | |
if "model_manager" in st.session_state: | |
st.session_state["model_manager"].to("cpu") | |
del st.session_state["loaded_model_path"] | |
del st.session_state["model_manager"] | |
del st.session_state["pipeline"] | |
torch.cuda.empty_cache() | |
def load_model(model_type, model_path): | |
model_manager = ModelManager() | |
if model_type == "HunyuanDiT": | |
model_manager.load_models([ | |
os.path.join(model_path, "clip_text_encoder/pytorch_model.bin"), | |
os.path.join(model_path, "mt5/pytorch_model.bin"), | |
os.path.join(model_path, "model/pytorch_model_ema.pt"), | |
os.path.join(model_path, "sdxl-vae-fp16-fix/diffusion_pytorch_model.bin"), | |
]) | |
else: | |
model_manager.load_model(model_path) | |
pipeline = config[model_type]["pipeline_class"].from_model_manager(model_manager) | |
st.session_state.loaded_model_path = model_path | |
st.session_state.model_manager = model_manager | |
st.session_state.pipeline = pipeline | |
return model_manager, pipeline | |
def use_output_image_as_input(update=True): | |
# Search for input image | |
output_image_id = 0 | |
selected_output_image = None | |
while True: | |
if f"use_output_as_input_{output_image_id}" not in st.session_state: | |
break | |
if st.session_state[f"use_output_as_input_{output_image_id}"]: | |
selected_output_image = st.session_state["output_images"][output_image_id] | |
break | |
output_image_id += 1 | |
if update and selected_output_image is not None: | |
st.session_state["input_image"] = selected_output_image | |
return selected_output_image is not None | |
def apply_stroke_to_image(stroke_image, image): | |
image = np.array(image.convert("RGB")).astype(np.float32) | |
height, width, _ = image.shape | |
stroke_image = np.array(Image.fromarray(stroke_image).resize((width, height))).astype(np.float32) | |
weight = stroke_image[:, :, -1:] / 255 | |
stroke_image = stroke_image[:, :, :-1] | |
image = stroke_image * weight + image * (1 - weight) | |
image = np.clip(image, 0, 255).astype(np.uint8) | |
image = Image.fromarray(image) | |
return image | |
def image2bits(image): | |
image_byte = io.BytesIO() | |
image.save(image_byte, format="PNG") | |
image_byte = image_byte.getvalue() | |
return image_byte | |
def show_output_image(image): | |
st.image(image, use_column_width="always") | |
st.button("Use it as input image", key=f"use_output_as_input_{image_id}") | |
st.download_button("Download", data=image2bits(image), file_name="image.png", mime="image/png", key=f"download_output_{image_id}") | |
column_input, column_output = st.columns(2) | |
with st.sidebar: | |
# Select a model | |
with st.expander("Model", expanded=True): | |
model_type = st.selectbox("Model type", [model_type_ for model_type_ in config]) | |
fixed_parameters = config[model_type]["fixed_parameters"] | |
model_path_list = ["None"] + load_model_list(model_type) | |
model_path = st.selectbox("Model path", model_path_list) | |
# Load the model | |
if model_path == "None": | |
# No models are selected. Release VRAM. | |
st.markdown("No models are selected.") | |
release_model() | |
else: | |
# A model is selected. | |
model_path = os.path.join(config[model_type]["model_folder"], model_path) | |
if st.session_state.get("loaded_model_path", "") != model_path: | |
# The loaded model is not the selected model. Reload it. | |
st.markdown(f"Loading model at {model_path}.") | |
st.markdown("Please wait a moment...") | |
release_model() | |
model_manager, pipeline = load_model(model_type, model_path) | |
st.markdown("Done.") | |
else: | |
# The loaded model is not the selected model. Fetch it from `st.session_state`. | |
st.markdown(f"Loading model at {model_path}.") | |
st.markdown("Please wait a moment...") | |
model_manager, pipeline = st.session_state.model_manager, st.session_state.pipeline | |
st.markdown("Done.") | |
# Show parameters | |
with st.expander("Prompt", expanded=True): | |
prompt = st.text_area("Positive prompt") | |
if "negative_prompt" in fixed_parameters: | |
negative_prompt = fixed_parameters["negative_prompt"] | |
else: | |
negative_prompt = st.text_area("Negative prompt") | |
if "cfg_scale" in fixed_parameters: | |
cfg_scale = fixed_parameters["cfg_scale"] | |
else: | |
cfg_scale = st.slider("Classifier-free guidance scale", min_value=1.0, max_value=10.0, value=7.5) | |
with st.expander("Image", expanded=True): | |
if "num_inference_steps" in fixed_parameters: | |
num_inference_steps = fixed_parameters["num_inference_steps"] | |
else: | |
num_inference_steps = st.slider("Inference steps", min_value=1, max_value=100, value=20) | |
if "height" in fixed_parameters: | |
height = fixed_parameters["height"] | |
else: | |
height = st.select_slider("Height", options=[256, 512, 768, 1024, 2048], value=512) | |
if "width" in fixed_parameters: | |
width = fixed_parameters["width"] | |
else: | |
width = st.select_slider("Width", options=[256, 512, 768, 1024, 2048], value=512) | |
num_images = st.number_input("Number of images", value=2) | |
use_fixed_seed = st.checkbox("Use fixed seed", value=False) | |
if use_fixed_seed: | |
seed = st.number_input("Random seed", min_value=0, max_value=10**9, step=1, value=0) | |
# Other fixed parameters | |
denoising_strength = 1.0 | |
repetition = 1 | |
# Show input image | |
with column_input: | |
with st.expander("Input image (Optional)", expanded=True): | |
with st.container(border=True): | |
column_white_board, column_upload_image = st.columns([1, 2]) | |
with column_white_board: | |
create_white_board = st.button("Create white board") | |
delete_input_image = st.button("Delete input image") | |
with column_upload_image: | |
upload_image = st.file_uploader("Upload image", type=["png", "jpg"], key="upload_image") | |
if upload_image is not None: | |
st.session_state["input_image"] = crop_and_resize(Image.open(upload_image), height, width) | |
elif create_white_board: | |
st.session_state["input_image"] = Image.fromarray(np.ones((height, width, 3), dtype=np.uint8) * 255) | |
else: | |
use_output_image_as_input() | |
if delete_input_image and "input_image" in st.session_state: | |
del st.session_state.input_image | |
if delete_input_image and "upload_image" in st.session_state: | |
del st.session_state.upload_image | |
input_image = st.session_state.get("input_image", None) | |
if input_image is not None: | |
with st.container(border=True): | |
column_drawing_mode, column_color_1, column_color_2 = st.columns([4, 1, 1]) | |
with column_drawing_mode: | |
drawing_mode = st.radio("Drawing tool", ["transform", "freedraw", "line", "rect"], horizontal=True, index=1) | |
with column_color_1: | |
stroke_color = st.color_picker("Stroke color") | |
with column_color_2: | |
fill_color = st.color_picker("Fill color") | |
stroke_width = st.slider("Stroke width", min_value=1, max_value=50, value=10) | |
with st.container(border=True): | |
denoising_strength = st.slider("Denoising strength", min_value=0.0, max_value=1.0, value=0.7) | |
repetition = st.slider("Repetition", min_value=1, max_value=8, value=1) | |
with st.container(border=True): | |
input_width, input_height = input_image.size | |
canvas_result = st_canvas( | |
fill_color=fill_color, | |
stroke_width=stroke_width, | |
stroke_color=stroke_color, | |
background_color="rgba(255, 255, 255, 0)", | |
background_image=input_image, | |
update_streamlit=True, | |
height=int(512 / input_width * input_height), | |
width=512, | |
drawing_mode=drawing_mode, | |
key="canvas" | |
) | |
with column_output: | |
run_button = st.button("Generate image", type="primary") | |
auto_update = st.checkbox("Auto update", value=False) | |
num_image_columns = st.slider("Columns", min_value=1, max_value=8, value=2) | |
image_columns = st.columns(num_image_columns) | |
# Run | |
if (run_button or auto_update) and model_path != "None": | |
if input_image is not None: | |
input_image = input_image.resize((width, height)) | |
if canvas_result.image_data is not None: | |
input_image = apply_stroke_to_image(canvas_result.image_data, input_image) | |
output_images = [] | |
for image_id in range(num_images * repetition): | |
if use_fixed_seed: | |
torch.manual_seed(seed + image_id) | |
else: | |
torch.manual_seed(np.random.randint(0, 10**9)) | |
if image_id >= num_images: | |
input_image = output_images[image_id - num_images] | |
with image_columns[image_id % num_image_columns]: | |
progress_bar_st = st.progress(0.0) | |
image = pipeline( | |
prompt, negative_prompt=negative_prompt, | |
cfg_scale=cfg_scale, num_inference_steps=num_inference_steps, | |
height=height, width=width, | |
input_image=input_image, denoising_strength=denoising_strength, | |
progress_bar_st=progress_bar_st | |
) | |
output_images.append(image) | |
progress_bar_st.progress(1.0) | |
show_output_image(image) | |
st.session_state["output_images"] = output_images | |
elif "output_images" in st.session_state: | |
for image_id in range(len(st.session_state.output_images)): | |
with image_columns[image_id % num_image_columns]: | |
image = st.session_state.output_images[image_id] | |
progress_bar = st.progress(1.0) | |
show_output_image(image) | |
if "upload_image" in st.session_state and use_output_image_as_input(update=False): | |
st.markdown("If you want to use an output image as input image, please delete the uploaded image manually.") | |