Spaces:
Runtime error
Runtime error
File size: 12,338 Bytes
fb4fac3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import torch, os, io
import numpy as np
from PIL import Image
import streamlit as st
st.set_page_config(layout="wide")
from streamlit_drawable_canvas import st_canvas
from diffsynth.models import ModelManager
from diffsynth.pipelines import SDImagePipeline, SDXLImagePipeline, SD3ImagePipeline, HunyuanDiTImagePipeline
from diffsynth.data.video import crop_and_resize
config = {
"Stable Diffusion": {
"model_folder": "models/stable_diffusion",
"pipeline_class": SDImagePipeline,
"fixed_parameters": {}
},
"Stable Diffusion XL": {
"model_folder": "models/stable_diffusion_xl",
"pipeline_class": SDXLImagePipeline,
"fixed_parameters": {}
},
"Stable Diffusion 3": {
"model_folder": "models/stable_diffusion_3",
"pipeline_class": SD3ImagePipeline,
"fixed_parameters": {}
},
"Stable Diffusion XL Turbo": {
"model_folder": "models/stable_diffusion_xl_turbo",
"pipeline_class": SDXLImagePipeline,
"fixed_parameters": {
"negative_prompt": "",
"cfg_scale": 1.0,
"num_inference_steps": 1,
"height": 512,
"width": 512,
}
},
"HunyuanDiT": {
"model_folder": "models/HunyuanDiT",
"pipeline_class": HunyuanDiTImagePipeline,
"fixed_parameters": {
"height": 1024,
"width": 1024,
}
},
}
def load_model_list(model_type):
folder = config[model_type]["model_folder"]
file_list = [i for i in os.listdir(folder) if i.endswith(".safetensors")]
if model_type == "HunyuanDiT":
file_list += [i for i in os.listdir(folder) if os.path.isdir(os.path.join(folder, i))]
file_list = sorted(file_list)
return file_list
def release_model():
if "model_manager" in st.session_state:
st.session_state["model_manager"].to("cpu")
del st.session_state["loaded_model_path"]
del st.session_state["model_manager"]
del st.session_state["pipeline"]
torch.cuda.empty_cache()
def load_model(model_type, model_path):
model_manager = ModelManager()
if model_type == "HunyuanDiT":
model_manager.load_models([
os.path.join(model_path, "clip_text_encoder/pytorch_model.bin"),
os.path.join(model_path, "mt5/pytorch_model.bin"),
os.path.join(model_path, "model/pytorch_model_ema.pt"),
os.path.join(model_path, "sdxl-vae-fp16-fix/diffusion_pytorch_model.bin"),
])
else:
model_manager.load_model(model_path)
pipeline = config[model_type]["pipeline_class"].from_model_manager(model_manager)
st.session_state.loaded_model_path = model_path
st.session_state.model_manager = model_manager
st.session_state.pipeline = pipeline
return model_manager, pipeline
def use_output_image_as_input(update=True):
# Search for input image
output_image_id = 0
selected_output_image = None
while True:
if f"use_output_as_input_{output_image_id}" not in st.session_state:
break
if st.session_state[f"use_output_as_input_{output_image_id}"]:
selected_output_image = st.session_state["output_images"][output_image_id]
break
output_image_id += 1
if update and selected_output_image is not None:
st.session_state["input_image"] = selected_output_image
return selected_output_image is not None
def apply_stroke_to_image(stroke_image, image):
image = np.array(image.convert("RGB")).astype(np.float32)
height, width, _ = image.shape
stroke_image = np.array(Image.fromarray(stroke_image).resize((width, height))).astype(np.float32)
weight = stroke_image[:, :, -1:] / 255
stroke_image = stroke_image[:, :, :-1]
image = stroke_image * weight + image * (1 - weight)
image = np.clip(image, 0, 255).astype(np.uint8)
image = Image.fromarray(image)
return image
@st.cache_data
def image2bits(image):
image_byte = io.BytesIO()
image.save(image_byte, format="PNG")
image_byte = image_byte.getvalue()
return image_byte
def show_output_image(image):
st.image(image, use_column_width="always")
st.button("Use it as input image", key=f"use_output_as_input_{image_id}")
st.download_button("Download", data=image2bits(image), file_name="image.png", mime="image/png", key=f"download_output_{image_id}")
column_input, column_output = st.columns(2)
with st.sidebar:
# Select a model
with st.expander("Model", expanded=True):
model_type = st.selectbox("Model type", [model_type_ for model_type_ in config])
fixed_parameters = config[model_type]["fixed_parameters"]
model_path_list = ["None"] + load_model_list(model_type)
model_path = st.selectbox("Model path", model_path_list)
# Load the model
if model_path == "None":
# No models are selected. Release VRAM.
st.markdown("No models are selected.")
release_model()
else:
# A model is selected.
model_path = os.path.join(config[model_type]["model_folder"], model_path)
if st.session_state.get("loaded_model_path", "") != model_path:
# The loaded model is not the selected model. Reload it.
st.markdown(f"Loading model at {model_path}.")
st.markdown("Please wait a moment...")
release_model()
model_manager, pipeline = load_model(model_type, model_path)
st.markdown("Done.")
else:
# The loaded model is not the selected model. Fetch it from `st.session_state`.
st.markdown(f"Loading model at {model_path}.")
st.markdown("Please wait a moment...")
model_manager, pipeline = st.session_state.model_manager, st.session_state.pipeline
st.markdown("Done.")
# Show parameters
with st.expander("Prompt", expanded=True):
prompt = st.text_area("Positive prompt")
if "negative_prompt" in fixed_parameters:
negative_prompt = fixed_parameters["negative_prompt"]
else:
negative_prompt = st.text_area("Negative prompt")
if "cfg_scale" in fixed_parameters:
cfg_scale = fixed_parameters["cfg_scale"]
else:
cfg_scale = st.slider("Classifier-free guidance scale", min_value=1.0, max_value=10.0, value=7.5)
with st.expander("Image", expanded=True):
if "num_inference_steps" in fixed_parameters:
num_inference_steps = fixed_parameters["num_inference_steps"]
else:
num_inference_steps = st.slider("Inference steps", min_value=1, max_value=100, value=20)
if "height" in fixed_parameters:
height = fixed_parameters["height"]
else:
height = st.select_slider("Height", options=[256, 512, 768, 1024, 2048], value=512)
if "width" in fixed_parameters:
width = fixed_parameters["width"]
else:
width = st.select_slider("Width", options=[256, 512, 768, 1024, 2048], value=512)
num_images = st.number_input("Number of images", value=2)
use_fixed_seed = st.checkbox("Use fixed seed", value=False)
if use_fixed_seed:
seed = st.number_input("Random seed", min_value=0, max_value=10**9, step=1, value=0)
# Other fixed parameters
denoising_strength = 1.0
repetition = 1
# Show input image
with column_input:
with st.expander("Input image (Optional)", expanded=True):
with st.container(border=True):
column_white_board, column_upload_image = st.columns([1, 2])
with column_white_board:
create_white_board = st.button("Create white board")
delete_input_image = st.button("Delete input image")
with column_upload_image:
upload_image = st.file_uploader("Upload image", type=["png", "jpg"], key="upload_image")
if upload_image is not None:
st.session_state["input_image"] = crop_and_resize(Image.open(upload_image), height, width)
elif create_white_board:
st.session_state["input_image"] = Image.fromarray(np.ones((height, width, 3), dtype=np.uint8) * 255)
else:
use_output_image_as_input()
if delete_input_image and "input_image" in st.session_state:
del st.session_state.input_image
if delete_input_image and "upload_image" in st.session_state:
del st.session_state.upload_image
input_image = st.session_state.get("input_image", None)
if input_image is not None:
with st.container(border=True):
column_drawing_mode, column_color_1, column_color_2 = st.columns([4, 1, 1])
with column_drawing_mode:
drawing_mode = st.radio("Drawing tool", ["transform", "freedraw", "line", "rect"], horizontal=True, index=1)
with column_color_1:
stroke_color = st.color_picker("Stroke color")
with column_color_2:
fill_color = st.color_picker("Fill color")
stroke_width = st.slider("Stroke width", min_value=1, max_value=50, value=10)
with st.container(border=True):
denoising_strength = st.slider("Denoising strength", min_value=0.0, max_value=1.0, value=0.7)
repetition = st.slider("Repetition", min_value=1, max_value=8, value=1)
with st.container(border=True):
input_width, input_height = input_image.size
canvas_result = st_canvas(
fill_color=fill_color,
stroke_width=stroke_width,
stroke_color=stroke_color,
background_color="rgba(255, 255, 255, 0)",
background_image=input_image,
update_streamlit=True,
height=int(512 / input_width * input_height),
width=512,
drawing_mode=drawing_mode,
key="canvas"
)
with column_output:
run_button = st.button("Generate image", type="primary")
auto_update = st.checkbox("Auto update", value=False)
num_image_columns = st.slider("Columns", min_value=1, max_value=8, value=2)
image_columns = st.columns(num_image_columns)
# Run
if (run_button or auto_update) and model_path != "None":
if input_image is not None:
input_image = input_image.resize((width, height))
if canvas_result.image_data is not None:
input_image = apply_stroke_to_image(canvas_result.image_data, input_image)
output_images = []
for image_id in range(num_images * repetition):
if use_fixed_seed:
torch.manual_seed(seed + image_id)
else:
torch.manual_seed(np.random.randint(0, 10**9))
if image_id >= num_images:
input_image = output_images[image_id - num_images]
with image_columns[image_id % num_image_columns]:
progress_bar_st = st.progress(0.0)
image = pipeline(
prompt, negative_prompt=negative_prompt,
cfg_scale=cfg_scale, num_inference_steps=num_inference_steps,
height=height, width=width,
input_image=input_image, denoising_strength=denoising_strength,
progress_bar_st=progress_bar_st
)
output_images.append(image)
progress_bar_st.progress(1.0)
show_output_image(image)
st.session_state["output_images"] = output_images
elif "output_images" in st.session_state:
for image_id in range(len(st.session_state.output_images)):
with image_columns[image_id % num_image_columns]:
image = st.session_state.output_images[image_id]
progress_bar = st.progress(1.0)
show_output_image(image)
if "upload_image" in st.session_state and use_output_image_as_input(update=False):
st.markdown("If you want to use an output image as input image, please delete the uploaded image manually.")
|