Spaces:
Runtime error
Runtime error
# ExVideo | |
ExVideo is a post-tuning technique aimed at enhancing the capability of video generation models. We have extended Stable Video Diffusion to achieve the generation of long videos up to 128 frames. | |
* [Project Page](https://ecnu-cilab.github.io/ExVideoProjectPage/) | |
* [Technical report](https://arxiv.org/abs/2406.14130) | |
* [Demo](https://huggingface.co/spaces/modelscope/ExVideo-SVD-128f-v1) | |
* Extended models | |
* [HuggingFace](https://huggingface.co/ECNU-CILab/ExVideo-SVD-128f-v1) | |
* [ModelScope](https://modelscope.cn/models/ECNU-CILab/ExVideo-SVD-128f-v1) | |
## Example: Text-to-video via extended Stable Video Diffusion | |
Generate a video using a text-to-image model and our image-to-video model. See [ExVideo_svd_test.py](./ExVideo_svd_test.py). | |
https://github.com/modelscope/DiffSynth-Studio/assets/35051019/d97f6aa9-8064-4b5b-9d49-ed6001bb9acc | |
## Train | |
* Step 1: Install additional packages | |
``` | |
pip install lightning deepspeed | |
``` | |
* Step 2: Download base model (from [HuggingFace](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/resolve/main/svd_xt.safetensors) or [ModelScope](https://www.modelscope.cn/api/v1/models/AI-ModelScope/stable-video-diffusion-img2vid-xt/repo?Revision=master&FilePath=svd_xt.safetensors)) to `models/stable_video_diffusion/svd_xt.safetensors`. | |
* Step 3: Prepare datasets | |
``` | |
path/to/your/dataset | |
βββ metadata.json | |
βββ videos | |
βββ video_1.mp4 | |
βββ video_2.mp4 | |
βββ video_3.mp4 | |
``` | |
where the `metadata.json` is | |
``` | |
[ | |
{ | |
"path": "videos/video_1.mp4" | |
}, | |
{ | |
"path": "videos/video_2.mp4" | |
}, | |
{ | |
"path": "videos/video_3.mp4" | |
} | |
] | |
``` | |
* Step 4: Run | |
``` | |
CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" python -u ExVideo_svd_train.py \ | |
--pretrained_path "models/stable_video_diffusion/svd_xt.safetensors" \ | |
--dataset_path "path/to/your/dataset" \ | |
--output_path "path/to/save/models" \ | |
--steps_per_epoch 8000 \ | |
--num_frames 128 \ | |
--height 512 \ | |
--width 512 \ | |
--dataloader_num_workers 2 \ | |
--learning_rate 1e-5 \ | |
--max_epochs 100 | |
``` | |
* Step 5: Post-process checkpoints | |
Calculate Exponential Moving Average (EMA) and package it using `safetensors`. | |
``` | |
python ExVideo_ema.py --output_path "path/to/save/models/lightning_logs/version_xx" --gamma 0.9 | |
``` | |
* Step 6: Enjoy your model | |
The EMA model is at `path/to/save/models/lightning_logs/version_xx/checkpoints/epoch=xx-step=yyy-ema.safetensors`. Load it in [ExVideo_svd_test.py](./ExVideo_svd_test.py) and then enjoy your model. | |