Diffutoon / examples /ExVideo /ExVideo_svd_test.py
kevinwang676's picture
Upload folder using huggingface_hub
fb4fac3 verified
from diffsynth import save_video, ModelManager, SVDVideoPipeline, HunyuanDiTImagePipeline, download_models
from diffsynth import ModelManager
import torch, os
# The models will be downloaded automatically.
# You can also use the following urls to download them manually.
# Download models (from Huggingface)
# Text-to-image model:
# `models/HunyuanDiT/t2i/clip_text_encoder/pytorch_model.bin`: [link](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/resolve/main/t2i/clip_text_encoder/pytorch_model.bin)
# `models/HunyuanDiT/t2i/mt5/pytorch_model.bin`: [link](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/resolve/main/t2i/mt5/pytorch_model.bin)
# `models/HunyuanDiT/t2i/model/pytorch_model_ema.pt`: [link](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/resolve/main/t2i/model/pytorch_model_ema.pt)
# `models/HunyuanDiT/t2i/sdxl-vae-fp16-fix/diffusion_pytorch_model.bin`: [link](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/resolve/main/t2i/sdxl-vae-fp16-fix/diffusion_pytorch_model.bin)
# Stable Video Diffusion model:
# `models/stable_video_diffusion/svd_xt.safetensors`: [link](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/resolve/main/svd_xt.safetensors)
# ExVideo extension blocks:
# `models/stable_video_diffusion/model.fp16.safetensors`: [link](https://huggingface.co/ECNU-CILab/ExVideo-SVD-128f-v1/resolve/main/model.fp16.safetensors)
# Download models (from Modelscope)
# Text-to-image model:
# `models/HunyuanDiT/t2i/clip_text_encoder/pytorch_model.bin`: [link](https://www.modelscope.cn/api/v1/models/modelscope/HunyuanDiT/repo?Revision=master&FilePath=t2i%2Fclip_text_encoder%2Fpytorch_model.bin)
# `models/HunyuanDiT/t2i/mt5/pytorch_model.bin`: [link](https://www.modelscope.cn/api/v1/models/modelscope/HunyuanDiT/repo?Revision=master&FilePath=t2i%2Fmt5%2Fpytorch_model.bin)
# `models/HunyuanDiT/t2i/model/pytorch_model_ema.pt`: [link](https://www.modelscope.cn/api/v1/models/modelscope/HunyuanDiT/repo?Revision=master&FilePath=t2i%2Fmodel%2Fpytorch_model_ema.pt)
# `models/HunyuanDiT/t2i/sdxl-vae-fp16-fix/diffusion_pytorch_model.bin`: [link](https://www.modelscope.cn/api/v1/models/modelscope/HunyuanDiT/repo?Revision=master&FilePath=t2i%2Fsdxl-vae-fp16-fix%2Fdiffusion_pytorch_model.bin)
# Stable Video Diffusion model:
# `models/stable_video_diffusion/svd_xt.safetensors`: [link](https://www.modelscope.cn/api/v1/models/AI-ModelScope/stable-video-diffusion-img2vid-xt/repo?Revision=master&FilePath=svd_xt.safetensors)
# ExVideo extension blocks:
# `models/stable_video_diffusion/model.fp16.safetensors`: [link](https://modelscope.cn/api/v1/models/ECNU-CILab/ExVideo-SVD-128f-v1/repo?Revision=master&FilePath=model.fp16.safetensors)
def generate_image():
# Load models
os.environ["TOKENIZERS_PARALLELISM"] = "True"
download_models(["HunyuanDiT"])
model_manager = ModelManager(torch_dtype=torch.float16, device="cuda",
file_path_list=[
"models/HunyuanDiT/t2i/clip_text_encoder/pytorch_model.bin",
"models/HunyuanDiT/t2i/mt5/pytorch_model.bin",
"models/HunyuanDiT/t2i/model/pytorch_model_ema.pt",
"models/HunyuanDiT/t2i/sdxl-vae-fp16-fix/diffusion_pytorch_model.bin",
])
pipe = HunyuanDiTImagePipeline.from_model_manager(model_manager)
# Generate an image
torch.manual_seed(0)
image = pipe(
prompt="bonfire, on the stone",
negative_prompt="错误的眼睛,糟糕的人脸,毁容,糟糕的艺术,变形,多余的肢体,模糊的颜色,模糊,重复,病态,残缺,",
num_inference_steps=50, height=1024, width=1024,
)
model_manager.to("cpu")
return image
def generate_video(image):
# Load models
download_models(["stable-video-diffusion-img2vid-xt", "ExVideo-SVD-128f-v1"])
model_manager = ModelManager(torch_dtype=torch.float16, device="cuda",
file_path_list=[
"models/stable_video_diffusion/svd_xt.safetensors",
"models/stable_video_diffusion/model.fp16.safetensors",
])
pipe = SVDVideoPipeline.from_model_manager(model_manager)
# Generate a video
torch.manual_seed(1)
video = pipe(
input_image=image.resize((512, 512)),
num_frames=128, fps=30, height=512, width=512,
motion_bucket_id=127,
num_inference_steps=50,
min_cfg_scale=2, max_cfg_scale=2, contrast_enhance_scale=1.2
)
model_manager.to("cpu")
return video
def upscale_video(image, video):
# Load models
download_models(["stable-video-diffusion-img2vid-xt", "ExVideo-SVD-128f-v1"])
model_manager = ModelManager(torch_dtype=torch.float16, device="cuda",
file_path_list=[
"models/stable_video_diffusion/svd_xt.safetensors",
"models/stable_video_diffusion/model.fp16.safetensors",
])
pipe = SVDVideoPipeline.from_model_manager(model_manager)
# Generate a video
torch.manual_seed(2)
video = pipe(
input_image=image.resize((1024, 1024)),
input_video=[frame.resize((1024, 1024)) for frame in video], denoising_strength=0.5,
num_frames=128, fps=30, height=1024, width=1024,
motion_bucket_id=127,
num_inference_steps=25,
min_cfg_scale=2, max_cfg_scale=2, contrast_enhance_scale=1.2
)
model_manager.to("cpu")
return video
# We use Hunyuan DiT to generate the first frame. 10GB VRAM is required.
# If you want to use your own image,
# please use `image = Image.open("your_image_file.png")` to replace the following code.
image = generate_image()
image.save("image.png")
# Now, generate a video with resolution of 512. 20GB VRAM is required.
video = generate_video(image)
save_video(video, "video_512.mp4", fps=30)
# Upscale the video. 52GB VRAM is required.
video = upscale_video(image, video)
save_video(video, "video_1024.mp4", fps=30)