from diffsynth import save_video, ModelManager, SVDVideoPipeline, HunyuanDiTImagePipeline, download_models from diffsynth import ModelManager import torch, os # The models will be downloaded automatically. # You can also use the following urls to download them manually. # Download models (from Huggingface) # Text-to-image model: # `models/HunyuanDiT/t2i/clip_text_encoder/pytorch_model.bin`: [link](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/resolve/main/t2i/clip_text_encoder/pytorch_model.bin) # `models/HunyuanDiT/t2i/mt5/pytorch_model.bin`: [link](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/resolve/main/t2i/mt5/pytorch_model.bin) # `models/HunyuanDiT/t2i/model/pytorch_model_ema.pt`: [link](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/resolve/main/t2i/model/pytorch_model_ema.pt) # `models/HunyuanDiT/t2i/sdxl-vae-fp16-fix/diffusion_pytorch_model.bin`: [link](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/resolve/main/t2i/sdxl-vae-fp16-fix/diffusion_pytorch_model.bin) # Stable Video Diffusion model: # `models/stable_video_diffusion/svd_xt.safetensors`: [link](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/resolve/main/svd_xt.safetensors) # ExVideo extension blocks: # `models/stable_video_diffusion/model.fp16.safetensors`: [link](https://huggingface.co/ECNU-CILab/ExVideo-SVD-128f-v1/resolve/main/model.fp16.safetensors) # Download models (from Modelscope) # Text-to-image model: # `models/HunyuanDiT/t2i/clip_text_encoder/pytorch_model.bin`: [link](https://www.modelscope.cn/api/v1/models/modelscope/HunyuanDiT/repo?Revision=master&FilePath=t2i%2Fclip_text_encoder%2Fpytorch_model.bin) # `models/HunyuanDiT/t2i/mt5/pytorch_model.bin`: [link](https://www.modelscope.cn/api/v1/models/modelscope/HunyuanDiT/repo?Revision=master&FilePath=t2i%2Fmt5%2Fpytorch_model.bin) # `models/HunyuanDiT/t2i/model/pytorch_model_ema.pt`: [link](https://www.modelscope.cn/api/v1/models/modelscope/HunyuanDiT/repo?Revision=master&FilePath=t2i%2Fmodel%2Fpytorch_model_ema.pt) # `models/HunyuanDiT/t2i/sdxl-vae-fp16-fix/diffusion_pytorch_model.bin`: [link](https://www.modelscope.cn/api/v1/models/modelscope/HunyuanDiT/repo?Revision=master&FilePath=t2i%2Fsdxl-vae-fp16-fix%2Fdiffusion_pytorch_model.bin) # Stable Video Diffusion model: # `models/stable_video_diffusion/svd_xt.safetensors`: [link](https://www.modelscope.cn/api/v1/models/AI-ModelScope/stable-video-diffusion-img2vid-xt/repo?Revision=master&FilePath=svd_xt.safetensors) # ExVideo extension blocks: # `models/stable_video_diffusion/model.fp16.safetensors`: [link](https://modelscope.cn/api/v1/models/ECNU-CILab/ExVideo-SVD-128f-v1/repo?Revision=master&FilePath=model.fp16.safetensors) def generate_image(): # Load models os.environ["TOKENIZERS_PARALLELISM"] = "True" download_models(["HunyuanDiT"]) model_manager = ModelManager(torch_dtype=torch.float16, device="cuda", file_path_list=[ "models/HunyuanDiT/t2i/clip_text_encoder/pytorch_model.bin", "models/HunyuanDiT/t2i/mt5/pytorch_model.bin", "models/HunyuanDiT/t2i/model/pytorch_model_ema.pt", "models/HunyuanDiT/t2i/sdxl-vae-fp16-fix/diffusion_pytorch_model.bin", ]) pipe = HunyuanDiTImagePipeline.from_model_manager(model_manager) # Generate an image torch.manual_seed(0) image = pipe( prompt="bonfire, on the stone", negative_prompt="错误的眼睛,糟糕的人脸,毁容,糟糕的艺术,变形,多余的肢体,模糊的颜色,模糊,重复,病态,残缺,", num_inference_steps=50, height=1024, width=1024, ) model_manager.to("cpu") return image def generate_video(image): # Load models download_models(["stable-video-diffusion-img2vid-xt", "ExVideo-SVD-128f-v1"]) model_manager = ModelManager(torch_dtype=torch.float16, device="cuda", file_path_list=[ "models/stable_video_diffusion/svd_xt.safetensors", "models/stable_video_diffusion/model.fp16.safetensors", ]) pipe = SVDVideoPipeline.from_model_manager(model_manager) # Generate a video torch.manual_seed(1) video = pipe( input_image=image.resize((512, 512)), num_frames=128, fps=30, height=512, width=512, motion_bucket_id=127, num_inference_steps=50, min_cfg_scale=2, max_cfg_scale=2, contrast_enhance_scale=1.2 ) model_manager.to("cpu") return video def upscale_video(image, video): # Load models download_models(["stable-video-diffusion-img2vid-xt", "ExVideo-SVD-128f-v1"]) model_manager = ModelManager(torch_dtype=torch.float16, device="cuda", file_path_list=[ "models/stable_video_diffusion/svd_xt.safetensors", "models/stable_video_diffusion/model.fp16.safetensors", ]) pipe = SVDVideoPipeline.from_model_manager(model_manager) # Generate a video torch.manual_seed(2) video = pipe( input_image=image.resize((1024, 1024)), input_video=[frame.resize((1024, 1024)) for frame in video], denoising_strength=0.5, num_frames=128, fps=30, height=1024, width=1024, motion_bucket_id=127, num_inference_steps=25, min_cfg_scale=2, max_cfg_scale=2, contrast_enhance_scale=1.2 ) model_manager.to("cpu") return video # We use Hunyuan DiT to generate the first frame. 10GB VRAM is required. # If you want to use your own image, # please use `image = Image.open("your_image_file.png")` to replace the following code. image = generate_image() image.save("image.png") # Now, generate a video with resolution of 512. 20GB VRAM is required. video = generate_video(image) save_video(video, "video_512.mp4", fps=30) # Upscale the video. 52GB VRAM is required. video = upscale_video(image, video) save_video(video, "video_1024.mp4", fps=30)