Diffutoon / examples /ExVideo /ExVideo_svd_train.py
kevinwang676's picture
Upload folder using huggingface_hub
fb4fac3 verified
raw
history blame
14.3 kB
import torch, json, os, imageio, argparse
from torchvision.transforms import v2
import numpy as np
from einops import rearrange, repeat
import lightning as pl
from diffsynth import ModelManager, SVDImageEncoder, SVDUNet, SVDVAEEncoder, ContinuousODEScheduler, load_state_dict
from diffsynth.pipelines.stable_video_diffusion import SVDCLIPImageProcessor
from diffsynth.models.svd_unet import TemporalAttentionBlock
class TextVideoDataset(torch.utils.data.Dataset):
def __init__(self, base_path, metadata_path, steps_per_epoch=10000, training_shapes=[(128, 1, 128, 512, 512)]):
with open(metadata_path, "r") as f:
metadata = json.load(f)
self.path = [os.path.join(base_path, i["path"]) for i in metadata]
self.steps_per_epoch = steps_per_epoch
self.training_shapes = training_shapes
self.frame_process = []
for max_num_frames, interval, num_frames, height, width in training_shapes:
self.frame_process.append(v2.Compose([
v2.Resize(size=max(height, width), antialias=True),
v2.CenterCrop(size=(height, width)),
v2.Normalize(mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5]),
]))
def load_frames_using_imageio(self, file_path, max_num_frames, start_frame_id, interval, num_frames, frame_process):
reader = imageio.get_reader(file_path)
if reader.count_frames() < max_num_frames or reader.count_frames() - 1 < start_frame_id + (num_frames - 1) * interval:
reader.close()
return None
frames = []
for frame_id in range(num_frames):
frame = reader.get_data(start_frame_id + frame_id * interval)
frame = torch.tensor(frame, dtype=torch.float32)
frame = rearrange(frame, "H W C -> 1 C H W")
frame = frame_process(frame)
frames.append(frame)
reader.close()
frames = torch.concat(frames, dim=0)
frames = rearrange(frames, "T C H W -> C T H W")
return frames
def load_video(self, file_path, training_shape_id):
data = {}
max_num_frames, interval, num_frames, height, width = self.training_shapes[training_shape_id]
frame_process = self.frame_process[training_shape_id]
start_frame_id = torch.randint(0, max_num_frames - (num_frames - 1) * interval, (1,))[0]
frames = self.load_frames_using_imageio(file_path, max_num_frames, start_frame_id, interval, num_frames, frame_process)
if frames is None:
return None
else:
data[f"frames_{training_shape_id}"] = frames
return data
def __getitem__(self, index):
video_data = {}
for training_shape_id in range(len(self.training_shapes)):
while True:
data_id = torch.randint(0, len(self.path), (1,))[0]
data_id = (data_id + index) % len(self.path) # For fixed seed.
video_file = self.path[data_id]
try:
data = self.load_video(video_file, training_shape_id)
except:
data = None
if data is not None:
break
video_data.update(data)
return video_data
def __len__(self):
return self.steps_per_epoch
class MotionBucketManager:
def __init__(self):
self.thresholds = [
0.000000000, 0.012205946, 0.015117834, 0.018080613, 0.020614484, 0.021959992, 0.024088068, 0.026323952,
0.028277775, 0.029968588, 0.031836554, 0.033596724, 0.035121530, 0.037200287, 0.038914755, 0.040696491,
0.042368013, 0.044265781, 0.046311017, 0.048243891, 0.050294187, 0.052142400, 0.053634230, 0.055612389,
0.057594258, 0.059410289, 0.061283995, 0.063603796, 0.065192916, 0.067146860, 0.069066539, 0.070390493,
0.072588451, 0.073959745, 0.075889029, 0.077695683, 0.079783581, 0.082162730, 0.084092639, 0.085958421,
0.087700523, 0.089684933, 0.091688842, 0.093335517, 0.094987206, 0.096664011, 0.098314710, 0.100262381,
0.101984538, 0.103404313, 0.105280340, 0.106974818, 0.109028399, 0.111164779, 0.113065213, 0.114362158,
0.116407216, 0.118063427, 0.119524263, 0.121835820, 0.124242283, 0.126202747, 0.128989249, 0.131672353,
0.133417681, 0.135567948, 0.137313649, 0.139189199, 0.140912935, 0.143525436, 0.145718485, 0.148315132,
0.151039496, 0.153218940, 0.155252382, 0.157651082, 0.159966752, 0.162195817, 0.164811596, 0.167341709,
0.170251891, 0.172651157, 0.175550997, 0.178372145, 0.181039348, 0.183565900, 0.186599866, 0.190071866,
0.192574754, 0.195026234, 0.198099136, 0.200210452, 0.202522039, 0.205410406, 0.208610669, 0.211623028,
0.214723110, 0.218520239, 0.222194016, 0.225363150, 0.229384825, 0.233422622, 0.237012610, 0.240735114,
0.243622541, 0.247465774, 0.252190471, 0.257356376, 0.261856794, 0.266556412, 0.271076709, 0.277361482,
0.281250387, 0.286582440, 0.291158527, 0.296712339, 0.303008437, 0.311793238, 0.318485111, 0.326999635,
0.332138240, 0.341770738, 0.354188830, 0.365194678, 0.379234344, 0.401538879, 0.416078776, 0.440871328,
]
def get_motion_score(self, frames):
score = frames.std(dim=2).mean(dim=[1, 2, 3]).tolist()
return score
def get_bucket_id(self, motion_score):
for bucket_id in range(len(self.thresholds) - 1):
if self.thresholds[bucket_id + 1] > motion_score:
return bucket_id
return len(self.thresholds) - 1
def __call__(self, frames):
scores = self.get_motion_score(frames)
bucket_ids = [self.get_bucket_id(score) for score in scores]
return bucket_ids
class LightningModel(pl.LightningModule):
def __init__(self, learning_rate=1e-5, svd_ckpt_path=None, add_positional_conv=128, contrast_enhance_scale=1.01):
super().__init__()
model_manager = ModelManager(torch_dtype=torch.float16, device=self.device)
model_manager.load_stable_video_diffusion(state_dict=load_state_dict(svd_ckpt_path), add_positional_conv=add_positional_conv)
self.image_encoder: SVDImageEncoder = model_manager.image_encoder
self.image_encoder.eval()
self.image_encoder.requires_grad_(False)
self.unet: SVDUNet = model_manager.unet
self.unet.train()
self.unet.requires_grad_(False)
for block in self.unet.blocks:
if isinstance(block, TemporalAttentionBlock):
block.requires_grad_(True)
self.vae_encoder: SVDVAEEncoder = model_manager.vae_encoder
self.vae_encoder.eval()
self.vae_encoder.requires_grad_(False)
self.noise_scheduler = ContinuousODEScheduler(num_inference_steps=1000)
self.learning_rate = learning_rate
self.motion_bucket_manager = MotionBucketManager()
self.contrast_enhance_scale = contrast_enhance_scale
def encode_image_with_clip(self, image):
image = SVDCLIPImageProcessor().resize_with_antialiasing(image, (224, 224))
image = (image + 1.0) / 2.0
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).reshape(1, 3, 1, 1).to(device=self.device, dtype=self.dtype)
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).reshape(1, 3, 1, 1).to(device=self.device, dtype=self.dtype)
image = (image - mean) / std
image_emb = self.image_encoder(image)
return image_emb
def encode_video_with_vae(self, video):
video = video.to(device=self.device, dtype=self.dtype)
video = video.unsqueeze(0)
latents = self.vae_encoder.encode_video(video)
latents = rearrange(latents[0], "C T H W -> T C H W")
return latents
def tensor2video(self, frames):
frames = rearrange(frames, "C T H W -> T H W C")
frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8)
return frames
def calculate_loss(self, frames):
with torch.no_grad():
# Call video encoder
latents = self.encode_video_with_vae(frames)
image_emb_vae = repeat(latents[0] / self.vae_encoder.scaling_factor, "C H W -> T C H W", T=frames.shape[1])
image_emb_clip = self.encode_image_with_clip(frames[:,0].unsqueeze(0))
# Call scheduler
timestep = torch.randint(0, len(self.noise_scheduler.timesteps), (1,))[0]
timestep = self.noise_scheduler.timesteps[timestep]
noise = torch.randn_like(latents)
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timestep)
# Prepare positional id
fps = 30
motion_bucket_id = self.motion_bucket_manager(frames.unsqueeze(0))[0]
noise_aug_strength = 0
add_time_id = torch.tensor([[fps-1, motion_bucket_id, noise_aug_strength]], device=self.device)
# Calculate loss
latents_input = torch.cat([noisy_latents, image_emb_vae], dim=1)
model_pred = self.unet(latents_input, timestep, image_emb_clip, add_time_id, use_gradient_checkpointing=True)
latents_output = self.noise_scheduler.step(model_pred.float(), timestep, noisy_latents.float(), to_final=True)
loss = torch.nn.functional.mse_loss(latents_output, latents.float() * self.contrast_enhance_scale, reduction="mean")
# Re-weighting
reweighted_loss = loss * self.noise_scheduler.training_weight(timestep)
return loss, reweighted_loss
def training_step(self, batch, batch_idx):
# Loss
frames = batch["frames_0"][0]
loss, reweighted_loss = self.calculate_loss(frames)
# Record log
self.log("train_loss", loss, prog_bar=True)
self.log("reweighted_train_loss", reweighted_loss, prog_bar=True)
return reweighted_loss
def configure_optimizers(self):
trainable_modules = []
for block in self.unet.blocks:
if isinstance(block, TemporalAttentionBlock):
trainable_modules += block.parameters()
optimizer = torch.optim.AdamW(trainable_modules, lr=self.learning_rate)
return optimizer
def on_save_checkpoint(self, checkpoint):
trainable_param_names = list(filter(lambda named_param: named_param[1].requires_grad, self.unet.named_parameters()))
trainable_param_names = [named_param[0] for named_param in trainable_param_names]
checkpoint["trainable_param_names"] = trainable_param_names
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_path",
type=str,
default=None,
required=True,
help="Path to pretrained model. For example, `models/stable_video_diffusion/svd_xt.safetensors`.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
required=False,
help="Path to checkpoint, in case your training program is stopped unexpectedly and you want to resume.",
)
parser.add_argument(
"--dataset_path",
type=str,
default=None,
required=True,
help="The path of the Dataset.",
)
parser.add_argument(
"--output_path",
type=str,
default="./",
help="Path to save the model.",
)
parser.add_argument(
"--steps_per_epoch",
type=int,
default=500,
help="Number of steps per epoch.",
)
parser.add_argument(
"--num_frames",
type=int,
default=128,
help="Number of frames.",
)
parser.add_argument(
"--height",
type=int,
default=512,
help="Image height.",
)
parser.add_argument(
"--width",
type=int,
default=512,
help="Image width.",
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=2,
help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-5,
help="Learning rate.",
)
parser.add_argument(
"--accumulate_grad_batches",
type=int,
default=1,
help="The number of batches in gradient accumulation.",
)
parser.add_argument(
"--max_epochs",
type=int,
default=1,
help="Number of epochs.",
)
parser.add_argument(
"--contrast_enhance_scale",
type=float,
default=1.01,
help="Avoid generating gray videos.",
)
args = parser.parse_args()
return args
if __name__ == '__main__':
# args
args = parse_args()
# dataset and data loader
dataset = TextVideoDataset(
args.dataset_path,
os.path.join(args.dataset_path, "metadata.json"),
training_shapes=[(args.num_frames, 1, args.num_frames, args.height, args.width)],
steps_per_epoch=args.steps_per_epoch,
)
train_loader = torch.utils.data.DataLoader(
dataset,
shuffle=True,
# We don't support batch_size > 1,
# because sometimes our GPU cannot process even one video.
batch_size=1,
num_workers=args.dataloader_num_workers
)
# model
model = LightningModel(
learning_rate=args.learning_rate,
svd_ckpt_path=args.pretrained_path,
add_positional_conv=args.num_frames,
contrast_enhance_scale=args.contrast_enhance_scale
)
# train
trainer = pl.Trainer(
max_epochs=args.max_epochs,
accelerator="gpu",
devices="auto",
strategy="deepspeed_stage_2",
precision="16-mixed",
default_root_dir=args.output_path,
accumulate_grad_batches=args.accumulate_grad_batches,
callbacks=[pl.pytorch.callbacks.ModelCheckpoint(save_top_k=-1)]
)
trainer.fit(
model=model,
train_dataloaders=train_loader,
ckpt_path=args.resume_from_checkpoint
)