Spaces:
Runtime error
Runtime error
File size: 14,278 Bytes
fb4fac3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import torch, json, os, imageio, argparse
from torchvision.transforms import v2
import numpy as np
from einops import rearrange, repeat
import lightning as pl
from diffsynth import ModelManager, SVDImageEncoder, SVDUNet, SVDVAEEncoder, ContinuousODEScheduler, load_state_dict
from diffsynth.pipelines.stable_video_diffusion import SVDCLIPImageProcessor
from diffsynth.models.svd_unet import TemporalAttentionBlock
class TextVideoDataset(torch.utils.data.Dataset):
def __init__(self, base_path, metadata_path, steps_per_epoch=10000, training_shapes=[(128, 1, 128, 512, 512)]):
with open(metadata_path, "r") as f:
metadata = json.load(f)
self.path = [os.path.join(base_path, i["path"]) for i in metadata]
self.steps_per_epoch = steps_per_epoch
self.training_shapes = training_shapes
self.frame_process = []
for max_num_frames, interval, num_frames, height, width in training_shapes:
self.frame_process.append(v2.Compose([
v2.Resize(size=max(height, width), antialias=True),
v2.CenterCrop(size=(height, width)),
v2.Normalize(mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5]),
]))
def load_frames_using_imageio(self, file_path, max_num_frames, start_frame_id, interval, num_frames, frame_process):
reader = imageio.get_reader(file_path)
if reader.count_frames() < max_num_frames or reader.count_frames() - 1 < start_frame_id + (num_frames - 1) * interval:
reader.close()
return None
frames = []
for frame_id in range(num_frames):
frame = reader.get_data(start_frame_id + frame_id * interval)
frame = torch.tensor(frame, dtype=torch.float32)
frame = rearrange(frame, "H W C -> 1 C H W")
frame = frame_process(frame)
frames.append(frame)
reader.close()
frames = torch.concat(frames, dim=0)
frames = rearrange(frames, "T C H W -> C T H W")
return frames
def load_video(self, file_path, training_shape_id):
data = {}
max_num_frames, interval, num_frames, height, width = self.training_shapes[training_shape_id]
frame_process = self.frame_process[training_shape_id]
start_frame_id = torch.randint(0, max_num_frames - (num_frames - 1) * interval, (1,))[0]
frames = self.load_frames_using_imageio(file_path, max_num_frames, start_frame_id, interval, num_frames, frame_process)
if frames is None:
return None
else:
data[f"frames_{training_shape_id}"] = frames
return data
def __getitem__(self, index):
video_data = {}
for training_shape_id in range(len(self.training_shapes)):
while True:
data_id = torch.randint(0, len(self.path), (1,))[0]
data_id = (data_id + index) % len(self.path) # For fixed seed.
video_file = self.path[data_id]
try:
data = self.load_video(video_file, training_shape_id)
except:
data = None
if data is not None:
break
video_data.update(data)
return video_data
def __len__(self):
return self.steps_per_epoch
class MotionBucketManager:
def __init__(self):
self.thresholds = [
0.000000000, 0.012205946, 0.015117834, 0.018080613, 0.020614484, 0.021959992, 0.024088068, 0.026323952,
0.028277775, 0.029968588, 0.031836554, 0.033596724, 0.035121530, 0.037200287, 0.038914755, 0.040696491,
0.042368013, 0.044265781, 0.046311017, 0.048243891, 0.050294187, 0.052142400, 0.053634230, 0.055612389,
0.057594258, 0.059410289, 0.061283995, 0.063603796, 0.065192916, 0.067146860, 0.069066539, 0.070390493,
0.072588451, 0.073959745, 0.075889029, 0.077695683, 0.079783581, 0.082162730, 0.084092639, 0.085958421,
0.087700523, 0.089684933, 0.091688842, 0.093335517, 0.094987206, 0.096664011, 0.098314710, 0.100262381,
0.101984538, 0.103404313, 0.105280340, 0.106974818, 0.109028399, 0.111164779, 0.113065213, 0.114362158,
0.116407216, 0.118063427, 0.119524263, 0.121835820, 0.124242283, 0.126202747, 0.128989249, 0.131672353,
0.133417681, 0.135567948, 0.137313649, 0.139189199, 0.140912935, 0.143525436, 0.145718485, 0.148315132,
0.151039496, 0.153218940, 0.155252382, 0.157651082, 0.159966752, 0.162195817, 0.164811596, 0.167341709,
0.170251891, 0.172651157, 0.175550997, 0.178372145, 0.181039348, 0.183565900, 0.186599866, 0.190071866,
0.192574754, 0.195026234, 0.198099136, 0.200210452, 0.202522039, 0.205410406, 0.208610669, 0.211623028,
0.214723110, 0.218520239, 0.222194016, 0.225363150, 0.229384825, 0.233422622, 0.237012610, 0.240735114,
0.243622541, 0.247465774, 0.252190471, 0.257356376, 0.261856794, 0.266556412, 0.271076709, 0.277361482,
0.281250387, 0.286582440, 0.291158527, 0.296712339, 0.303008437, 0.311793238, 0.318485111, 0.326999635,
0.332138240, 0.341770738, 0.354188830, 0.365194678, 0.379234344, 0.401538879, 0.416078776, 0.440871328,
]
def get_motion_score(self, frames):
score = frames.std(dim=2).mean(dim=[1, 2, 3]).tolist()
return score
def get_bucket_id(self, motion_score):
for bucket_id in range(len(self.thresholds) - 1):
if self.thresholds[bucket_id + 1] > motion_score:
return bucket_id
return len(self.thresholds) - 1
def __call__(self, frames):
scores = self.get_motion_score(frames)
bucket_ids = [self.get_bucket_id(score) for score in scores]
return bucket_ids
class LightningModel(pl.LightningModule):
def __init__(self, learning_rate=1e-5, svd_ckpt_path=None, add_positional_conv=128, contrast_enhance_scale=1.01):
super().__init__()
model_manager = ModelManager(torch_dtype=torch.float16, device=self.device)
model_manager.load_stable_video_diffusion(state_dict=load_state_dict(svd_ckpt_path), add_positional_conv=add_positional_conv)
self.image_encoder: SVDImageEncoder = model_manager.image_encoder
self.image_encoder.eval()
self.image_encoder.requires_grad_(False)
self.unet: SVDUNet = model_manager.unet
self.unet.train()
self.unet.requires_grad_(False)
for block in self.unet.blocks:
if isinstance(block, TemporalAttentionBlock):
block.requires_grad_(True)
self.vae_encoder: SVDVAEEncoder = model_manager.vae_encoder
self.vae_encoder.eval()
self.vae_encoder.requires_grad_(False)
self.noise_scheduler = ContinuousODEScheduler(num_inference_steps=1000)
self.learning_rate = learning_rate
self.motion_bucket_manager = MotionBucketManager()
self.contrast_enhance_scale = contrast_enhance_scale
def encode_image_with_clip(self, image):
image = SVDCLIPImageProcessor().resize_with_antialiasing(image, (224, 224))
image = (image + 1.0) / 2.0
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).reshape(1, 3, 1, 1).to(device=self.device, dtype=self.dtype)
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).reshape(1, 3, 1, 1).to(device=self.device, dtype=self.dtype)
image = (image - mean) / std
image_emb = self.image_encoder(image)
return image_emb
def encode_video_with_vae(self, video):
video = video.to(device=self.device, dtype=self.dtype)
video = video.unsqueeze(0)
latents = self.vae_encoder.encode_video(video)
latents = rearrange(latents[0], "C T H W -> T C H W")
return latents
def tensor2video(self, frames):
frames = rearrange(frames, "C T H W -> T H W C")
frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8)
return frames
def calculate_loss(self, frames):
with torch.no_grad():
# Call video encoder
latents = self.encode_video_with_vae(frames)
image_emb_vae = repeat(latents[0] / self.vae_encoder.scaling_factor, "C H W -> T C H W", T=frames.shape[1])
image_emb_clip = self.encode_image_with_clip(frames[:,0].unsqueeze(0))
# Call scheduler
timestep = torch.randint(0, len(self.noise_scheduler.timesteps), (1,))[0]
timestep = self.noise_scheduler.timesteps[timestep]
noise = torch.randn_like(latents)
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timestep)
# Prepare positional id
fps = 30
motion_bucket_id = self.motion_bucket_manager(frames.unsqueeze(0))[0]
noise_aug_strength = 0
add_time_id = torch.tensor([[fps-1, motion_bucket_id, noise_aug_strength]], device=self.device)
# Calculate loss
latents_input = torch.cat([noisy_latents, image_emb_vae], dim=1)
model_pred = self.unet(latents_input, timestep, image_emb_clip, add_time_id, use_gradient_checkpointing=True)
latents_output = self.noise_scheduler.step(model_pred.float(), timestep, noisy_latents.float(), to_final=True)
loss = torch.nn.functional.mse_loss(latents_output, latents.float() * self.contrast_enhance_scale, reduction="mean")
# Re-weighting
reweighted_loss = loss * self.noise_scheduler.training_weight(timestep)
return loss, reweighted_loss
def training_step(self, batch, batch_idx):
# Loss
frames = batch["frames_0"][0]
loss, reweighted_loss = self.calculate_loss(frames)
# Record log
self.log("train_loss", loss, prog_bar=True)
self.log("reweighted_train_loss", reweighted_loss, prog_bar=True)
return reweighted_loss
def configure_optimizers(self):
trainable_modules = []
for block in self.unet.blocks:
if isinstance(block, TemporalAttentionBlock):
trainable_modules += block.parameters()
optimizer = torch.optim.AdamW(trainable_modules, lr=self.learning_rate)
return optimizer
def on_save_checkpoint(self, checkpoint):
trainable_param_names = list(filter(lambda named_param: named_param[1].requires_grad, self.unet.named_parameters()))
trainable_param_names = [named_param[0] for named_param in trainable_param_names]
checkpoint["trainable_param_names"] = trainable_param_names
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_path",
type=str,
default=None,
required=True,
help="Path to pretrained model. For example, `models/stable_video_diffusion/svd_xt.safetensors`.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
required=False,
help="Path to checkpoint, in case your training program is stopped unexpectedly and you want to resume.",
)
parser.add_argument(
"--dataset_path",
type=str,
default=None,
required=True,
help="The path of the Dataset.",
)
parser.add_argument(
"--output_path",
type=str,
default="./",
help="Path to save the model.",
)
parser.add_argument(
"--steps_per_epoch",
type=int,
default=500,
help="Number of steps per epoch.",
)
parser.add_argument(
"--num_frames",
type=int,
default=128,
help="Number of frames.",
)
parser.add_argument(
"--height",
type=int,
default=512,
help="Image height.",
)
parser.add_argument(
"--width",
type=int,
default=512,
help="Image width.",
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=2,
help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-5,
help="Learning rate.",
)
parser.add_argument(
"--accumulate_grad_batches",
type=int,
default=1,
help="The number of batches in gradient accumulation.",
)
parser.add_argument(
"--max_epochs",
type=int,
default=1,
help="Number of epochs.",
)
parser.add_argument(
"--contrast_enhance_scale",
type=float,
default=1.01,
help="Avoid generating gray videos.",
)
args = parser.parse_args()
return args
if __name__ == '__main__':
# args
args = parse_args()
# dataset and data loader
dataset = TextVideoDataset(
args.dataset_path,
os.path.join(args.dataset_path, "metadata.json"),
training_shapes=[(args.num_frames, 1, args.num_frames, args.height, args.width)],
steps_per_epoch=args.steps_per_epoch,
)
train_loader = torch.utils.data.DataLoader(
dataset,
shuffle=True,
# We don't support batch_size > 1,
# because sometimes our GPU cannot process even one video.
batch_size=1,
num_workers=args.dataloader_num_workers
)
# model
model = LightningModel(
learning_rate=args.learning_rate,
svd_ckpt_path=args.pretrained_path,
add_positional_conv=args.num_frames,
contrast_enhance_scale=args.contrast_enhance_scale
)
# train
trainer = pl.Trainer(
max_epochs=args.max_epochs,
accelerator="gpu",
devices="auto",
strategy="deepspeed_stage_2",
precision="16-mixed",
default_root_dir=args.output_path,
accumulate_grad_batches=args.accumulate_grad_batches,
callbacks=[pl.pytorch.callbacks.ModelCheckpoint(save_top_k=-1)]
)
trainer.fit(
model=model,
train_dataloaders=train_loader,
ckpt_path=args.resume_from_checkpoint
)
|