Diffutoon / diffsynth /pipelines /stable_diffusion_video.py
kevinwang676's picture
Upload folder using huggingface_hub
fb4fac3 verified
raw
history blame
16.2 kB
from ..models import ModelManager, SDTextEncoder, SDUNet, SDVAEDecoder, SDVAEEncoder, SDMotionModel
from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator
from ..prompts import SDPrompter
from ..schedulers import EnhancedDDIMScheduler
from ..data import VideoData, save_frames, save_video
from .dancer import lets_dance
from ..processors.sequencial_processor import SequencialProcessor
from typing import List
import torch, os, json
from tqdm import tqdm
from PIL import Image
import numpy as np
def lets_dance_with_long_video(
unet: SDUNet,
motion_modules: SDMotionModel = None,
controlnet: MultiControlNetManager = None,
sample = None,
timestep = None,
encoder_hidden_states = None,
controlnet_frames = None,
animatediff_batch_size = 16,
animatediff_stride = 8,
unet_batch_size = 1,
controlnet_batch_size = 1,
cross_frame_attention = False,
device = "cuda",
vram_limit_level = 0,
):
num_frames = sample.shape[0]
hidden_states_output = [(torch.zeros(sample[0].shape, dtype=sample[0].dtype), 0) for i in range(num_frames)]
for batch_id in range(0, num_frames, animatediff_stride):
batch_id_ = min(batch_id + animatediff_batch_size, num_frames)
# process this batch
hidden_states_batch = lets_dance(
unet, motion_modules, controlnet,
sample[batch_id: batch_id_].to(device),
timestep,
encoder_hidden_states[batch_id: batch_id_].to(device),
controlnet_frames=controlnet_frames[:, batch_id: batch_id_].to(device) if controlnet_frames is not None else None,
unet_batch_size=unet_batch_size, controlnet_batch_size=controlnet_batch_size,
cross_frame_attention=cross_frame_attention,
device=device, vram_limit_level=vram_limit_level
).cpu()
# update hidden_states
for i, hidden_states_updated in zip(range(batch_id, batch_id_), hidden_states_batch):
bias = max(1 - abs(i - (batch_id + batch_id_ - 1) / 2) / ((batch_id_ - batch_id - 1 + 1e-2) / 2), 1e-2)
hidden_states, num = hidden_states_output[i]
hidden_states = hidden_states * (num / (num + bias)) + hidden_states_updated * (bias / (num + bias))
hidden_states_output[i] = (hidden_states, num + bias)
if batch_id_ == num_frames:
break
# output
hidden_states = torch.stack([h for h, _ in hidden_states_output])
return hidden_states
class SDVideoPipeline(torch.nn.Module):
def __init__(self, device="cuda", torch_dtype=torch.float16, use_animatediff=True):
super().__init__()
self.scheduler = EnhancedDDIMScheduler(beta_schedule="linear" if use_animatediff else "scaled_linear")
self.prompter = SDPrompter()
self.device = device
self.torch_dtype = torch_dtype
# models
self.text_encoder: SDTextEncoder = None
self.unet: SDUNet = None
self.vae_decoder: SDVAEDecoder = None
self.vae_encoder: SDVAEEncoder = None
self.controlnet: MultiControlNetManager = None
self.motion_modules: SDMotionModel = None
def fetch_main_models(self, model_manager: ModelManager):
self.text_encoder = model_manager.text_encoder
self.unet = model_manager.unet
self.vae_decoder = model_manager.vae_decoder
self.vae_encoder = model_manager.vae_encoder
def fetch_controlnet_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[]):
controlnet_units = []
for config in controlnet_config_units:
controlnet_unit = ControlNetUnit(
Annotator(config.processor_id, device=self.device),
model_manager.get_model_with_model_path(config.model_path),
config.scale
)
controlnet_units.append(controlnet_unit)
self.controlnet = MultiControlNetManager(controlnet_units)
def fetch_motion_modules(self, model_manager: ModelManager):
if "motion_modules" in model_manager.model:
self.motion_modules = model_manager.motion_modules
def fetch_prompter(self, model_manager: ModelManager):
self.prompter.load_from_model_manager(model_manager)
@staticmethod
def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[]):
pipe = SDVideoPipeline(
device=model_manager.device,
torch_dtype=model_manager.torch_dtype,
use_animatediff="motion_modules" in model_manager.model
)
pipe.fetch_main_models(model_manager)
pipe.fetch_motion_modules(model_manager)
pipe.fetch_prompter(model_manager)
pipe.fetch_controlnet_models(model_manager, controlnet_config_units)
return pipe
def preprocess_image(self, image):
image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0)
return image
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32):
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0]
image = image.cpu().permute(1, 2, 0).numpy()
image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8"))
return image
def decode_images(self, latents, tiled=False, tile_size=64, tile_stride=32):
images = [
self.decode_image(latents[frame_id: frame_id+1], tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
for frame_id in range(latents.shape[0])
]
return images
def encode_images(self, processed_images, tiled=False, tile_size=64, tile_stride=32):
latents = []
for image in processed_images:
image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype)
latent = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).cpu()
latents.append(latent)
latents = torch.concat(latents, dim=0)
return latents
@torch.no_grad()
def __call__(
self,
prompt,
negative_prompt="",
cfg_scale=7.5,
clip_skip=1,
num_frames=None,
input_frames=None,
controlnet_frames=None,
denoising_strength=1.0,
height=512,
width=512,
num_inference_steps=20,
animatediff_batch_size = 16,
animatediff_stride = 8,
unet_batch_size = 1,
controlnet_batch_size = 1,
cross_frame_attention = False,
smoother=None,
smoother_progress_ids=[],
vram_limit_level=0,
progress_bar_cmd=tqdm,
progress_bar_st=None,
):
# Prepare scheduler
self.scheduler.set_timesteps(num_inference_steps, denoising_strength)
# Prepare latent tensors
if self.motion_modules is None:
noise = torch.randn((1, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype).repeat(num_frames, 1, 1, 1)
else:
noise = torch.randn((num_frames, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype)
if input_frames is None or denoising_strength == 1.0:
latents = noise
else:
latents = self.encode_images(input_frames)
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
# Encode prompts
prompt_emb_posi = self.prompter.encode_prompt(self.text_encoder, prompt, clip_skip=clip_skip, device=self.device, positive=True).cpu()
prompt_emb_nega = self.prompter.encode_prompt(self.text_encoder, negative_prompt, clip_skip=clip_skip, device=self.device, positive=False).cpu()
prompt_emb_posi = prompt_emb_posi.repeat(num_frames, 1, 1)
prompt_emb_nega = prompt_emb_nega.repeat(num_frames, 1, 1)
# Prepare ControlNets
if controlnet_frames is not None:
if isinstance(controlnet_frames[0], list):
controlnet_frames_ = []
for processor_id in range(len(controlnet_frames)):
controlnet_frames_.append(
torch.stack([
self.controlnet.process_image(controlnet_frame, processor_id=processor_id).to(self.torch_dtype)
for controlnet_frame in progress_bar_cmd(controlnet_frames[processor_id])
], dim=1)
)
controlnet_frames = torch.concat(controlnet_frames_, dim=0)
else:
controlnet_frames = torch.stack([
self.controlnet.process_image(controlnet_frame).to(self.torch_dtype)
for controlnet_frame in progress_bar_cmd(controlnet_frames)
], dim=1)
# Denoise
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
timestep = torch.IntTensor((timestep,))[0].to(self.device)
# Classifier-free guidance
noise_pred_posi = lets_dance_with_long_video(
self.unet, motion_modules=self.motion_modules, controlnet=self.controlnet,
sample=latents, timestep=timestep, encoder_hidden_states=prompt_emb_posi, controlnet_frames=controlnet_frames,
animatediff_batch_size=animatediff_batch_size, animatediff_stride=animatediff_stride,
unet_batch_size=unet_batch_size, controlnet_batch_size=controlnet_batch_size,
cross_frame_attention=cross_frame_attention,
device=self.device, vram_limit_level=vram_limit_level
)
noise_pred_nega = lets_dance_with_long_video(
self.unet, motion_modules=self.motion_modules, controlnet=self.controlnet,
sample=latents, timestep=timestep, encoder_hidden_states=prompt_emb_nega, controlnet_frames=controlnet_frames,
animatediff_batch_size=animatediff_batch_size, animatediff_stride=animatediff_stride,
unet_batch_size=unet_batch_size, controlnet_batch_size=controlnet_batch_size,
cross_frame_attention=cross_frame_attention,
device=self.device, vram_limit_level=vram_limit_level
)
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
# DDIM and smoother
if smoother is not None and progress_id in smoother_progress_ids:
rendered_frames = self.scheduler.step(noise_pred, timestep, latents, to_final=True)
rendered_frames = self.decode_images(rendered_frames)
rendered_frames = smoother(rendered_frames, original_frames=input_frames)
target_latents = self.encode_images(rendered_frames)
noise_pred = self.scheduler.return_to_timestep(timestep, latents, target_latents)
latents = self.scheduler.step(noise_pred, timestep, latents)
# UI
if progress_bar_st is not None:
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
# Decode image
output_frames = self.decode_images(latents)
# Post-process
if smoother is not None and (num_inference_steps in smoother_progress_ids or -1 in smoother_progress_ids):
output_frames = smoother(output_frames, original_frames=input_frames)
return output_frames
class SDVideoPipelineRunner:
def __init__(self, in_streamlit=False):
self.in_streamlit = in_streamlit
def load_pipeline(self, model_list, textual_inversion_folder, device, lora_alphas, controlnet_units):
# Load models
model_manager = ModelManager(torch_dtype=torch.float16, device=device)
model_manager.load_textual_inversions(textual_inversion_folder)
model_manager.load_models(model_list, lora_alphas=lora_alphas)
pipe = SDVideoPipeline.from_model_manager(
model_manager,
[
ControlNetConfigUnit(
processor_id=unit["processor_id"],
model_path=unit["model_path"],
scale=unit["scale"]
) for unit in controlnet_units
]
)
return model_manager, pipe
def load_smoother(self, model_manager, smoother_configs):
smoother = SequencialProcessor.from_model_manager(model_manager, smoother_configs)
return smoother
def synthesize_video(self, model_manager, pipe, seed, smoother, **pipeline_inputs):
torch.manual_seed(seed)
if self.in_streamlit:
import streamlit as st
progress_bar_st = st.progress(0.0)
output_video = pipe(**pipeline_inputs, smoother=smoother, progress_bar_st=progress_bar_st)
progress_bar_st.progress(1.0)
else:
output_video = pipe(**pipeline_inputs, smoother=smoother)
model_manager.to("cpu")
return output_video
def load_video(self, video_file, image_folder, height, width, start_frame_id, end_frame_id):
video = VideoData(video_file=video_file, image_folder=image_folder, height=height, width=width)
if start_frame_id is None:
start_frame_id = 0
if end_frame_id is None:
end_frame_id = len(video)
frames = [video[i] for i in range(start_frame_id, end_frame_id)]
return frames
def add_data_to_pipeline_inputs(self, data, pipeline_inputs):
pipeline_inputs["input_frames"] = self.load_video(**data["input_frames"])
pipeline_inputs["num_frames"] = len(pipeline_inputs["input_frames"])
pipeline_inputs["width"], pipeline_inputs["height"] = pipeline_inputs["input_frames"][0].size
if len(data["controlnet_frames"]) > 0:
pipeline_inputs["controlnet_frames"] = [self.load_video(**unit) for unit in data["controlnet_frames"]]
return pipeline_inputs
def save_output(self, video, output_folder, fps, config):
os.makedirs(output_folder, exist_ok=True)
save_frames(video, os.path.join(output_folder, "frames"))
save_video(video, os.path.join(output_folder, "video.mp4"), fps=fps)
config["pipeline"]["pipeline_inputs"]["input_frames"] = []
config["pipeline"]["pipeline_inputs"]["controlnet_frames"] = []
with open(os.path.join(output_folder, "config.json"), 'w') as file:
json.dump(config, file, indent=4)
def run(self, config):
if self.in_streamlit:
import streamlit as st
if self.in_streamlit: st.markdown("Loading videos ...")
config["pipeline"]["pipeline_inputs"] = self.add_data_to_pipeline_inputs(config["data"], config["pipeline"]["pipeline_inputs"])
if self.in_streamlit: st.markdown("Loading videos ... done!")
if self.in_streamlit: st.markdown("Loading models ...")
model_manager, pipe = self.load_pipeline(**config["models"])
if self.in_streamlit: st.markdown("Loading models ... done!")
if "smoother_configs" in config:
if self.in_streamlit: st.markdown("Loading smoother ...")
smoother = self.load_smoother(model_manager, config["smoother_configs"])
if self.in_streamlit: st.markdown("Loading smoother ... done!")
else:
smoother = None
if self.in_streamlit: st.markdown("Synthesizing videos ...")
output_video = self.synthesize_video(model_manager, pipe, config["pipeline"]["seed"], smoother, **config["pipeline"]["pipeline_inputs"])
if self.in_streamlit: st.markdown("Synthesizing videos ... done!")
if self.in_streamlit: st.markdown("Saving videos ...")
self.save_output(output_video, config["data"]["output_folder"], config["data"]["fps"], config)
if self.in_streamlit: st.markdown("Saving videos ... done!")
if self.in_streamlit: st.markdown("Finished!")
video_file = open(os.path.join(os.path.join(config["data"]["output_folder"], "video.mp4")), 'rb')
if self.in_streamlit: st.video(video_file.read())