File size: 16,248 Bytes
fb4fac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
from ..models import ModelManager, SDTextEncoder, SDUNet, SDVAEDecoder, SDVAEEncoder, SDMotionModel
from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator
from ..prompts import SDPrompter
from ..schedulers import EnhancedDDIMScheduler
from ..data import VideoData, save_frames, save_video
from .dancer import lets_dance
from ..processors.sequencial_processor import SequencialProcessor
from typing import List
import torch, os, json
from tqdm import tqdm
from PIL import Image
import numpy as np


def lets_dance_with_long_video(
    unet: SDUNet,
    motion_modules: SDMotionModel = None,
    controlnet: MultiControlNetManager = None,
    sample = None,
    timestep = None,
    encoder_hidden_states = None,
    controlnet_frames = None,
    animatediff_batch_size = 16,
    animatediff_stride = 8,
    unet_batch_size = 1,
    controlnet_batch_size = 1,
    cross_frame_attention = False,
    device = "cuda",
    vram_limit_level = 0,
):
    num_frames = sample.shape[0]
    hidden_states_output = [(torch.zeros(sample[0].shape, dtype=sample[0].dtype), 0) for i in range(num_frames)]

    for batch_id in range(0, num_frames, animatediff_stride):
        batch_id_ = min(batch_id + animatediff_batch_size, num_frames)

        # process this batch
        hidden_states_batch = lets_dance(
            unet, motion_modules, controlnet,
            sample[batch_id: batch_id_].to(device),
            timestep,
            encoder_hidden_states[batch_id: batch_id_].to(device),
            controlnet_frames=controlnet_frames[:, batch_id: batch_id_].to(device) if controlnet_frames is not None else None,
            unet_batch_size=unet_batch_size, controlnet_batch_size=controlnet_batch_size,
            cross_frame_attention=cross_frame_attention,
            device=device, vram_limit_level=vram_limit_level
        ).cpu()

        # update hidden_states
        for i, hidden_states_updated in zip(range(batch_id, batch_id_), hidden_states_batch):
            bias = max(1 - abs(i - (batch_id + batch_id_ - 1) / 2) / ((batch_id_ - batch_id - 1 + 1e-2) / 2), 1e-2)
            hidden_states, num = hidden_states_output[i]
            hidden_states = hidden_states * (num / (num + bias)) + hidden_states_updated * (bias / (num + bias))
            hidden_states_output[i] = (hidden_states, num + bias)

        if batch_id_ == num_frames:
            break

    # output
    hidden_states = torch.stack([h for h, _ in hidden_states_output])
    return hidden_states


class SDVideoPipeline(torch.nn.Module):

    def __init__(self, device="cuda", torch_dtype=torch.float16, use_animatediff=True):
        super().__init__()
        self.scheduler = EnhancedDDIMScheduler(beta_schedule="linear" if use_animatediff else "scaled_linear")
        self.prompter = SDPrompter()
        self.device = device
        self.torch_dtype = torch_dtype
        # models
        self.text_encoder: SDTextEncoder = None
        self.unet: SDUNet = None
        self.vae_decoder: SDVAEDecoder = None
        self.vae_encoder: SDVAEEncoder = None
        self.controlnet: MultiControlNetManager = None
        self.motion_modules: SDMotionModel = None


    def fetch_main_models(self, model_manager: ModelManager):
        self.text_encoder = model_manager.text_encoder
        self.unet = model_manager.unet
        self.vae_decoder = model_manager.vae_decoder
        self.vae_encoder = model_manager.vae_encoder


    def fetch_controlnet_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[]):
        controlnet_units = []
        for config in controlnet_config_units:
            controlnet_unit = ControlNetUnit(
                Annotator(config.processor_id, device=self.device),
                model_manager.get_model_with_model_path(config.model_path),
                config.scale
            )
            controlnet_units.append(controlnet_unit)
        self.controlnet = MultiControlNetManager(controlnet_units)


    def fetch_motion_modules(self, model_manager: ModelManager):
        if "motion_modules" in model_manager.model:
            self.motion_modules = model_manager.motion_modules


    def fetch_prompter(self, model_manager: ModelManager):
        self.prompter.load_from_model_manager(model_manager)


    @staticmethod
    def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[]):
        pipe = SDVideoPipeline(
            device=model_manager.device,
            torch_dtype=model_manager.torch_dtype,
            use_animatediff="motion_modules" in model_manager.model
        )
        pipe.fetch_main_models(model_manager)
        pipe.fetch_motion_modules(model_manager)
        pipe.fetch_prompter(model_manager)
        pipe.fetch_controlnet_models(model_manager, controlnet_config_units)
        return pipe
    

    def preprocess_image(self, image):
        image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0)
        return image
    

    def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32):
        image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0]
        image = image.cpu().permute(1, 2, 0).numpy()
        image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8"))
        return image
    

    def decode_images(self, latents, tiled=False, tile_size=64, tile_stride=32):
        images = [
            self.decode_image(latents[frame_id: frame_id+1], tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
            for frame_id in range(latents.shape[0])
        ]
        return images
    

    def encode_images(self, processed_images, tiled=False, tile_size=64, tile_stride=32):
        latents = []
        for image in processed_images:
            image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype)
            latent = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).cpu()
            latents.append(latent)
        latents = torch.concat(latents, dim=0)
        return latents
    

    @torch.no_grad()
    def __call__(
        self,
        prompt,
        negative_prompt="",
        cfg_scale=7.5,
        clip_skip=1,
        num_frames=None,
        input_frames=None,
        controlnet_frames=None,
        denoising_strength=1.0,
        height=512,
        width=512,
        num_inference_steps=20,
        animatediff_batch_size = 16,
        animatediff_stride = 8,
        unet_batch_size = 1,
        controlnet_batch_size = 1,
        cross_frame_attention = False,
        smoother=None,
        smoother_progress_ids=[],
        vram_limit_level=0,
        progress_bar_cmd=tqdm,
        progress_bar_st=None,
    ):
        # Prepare scheduler
        self.scheduler.set_timesteps(num_inference_steps, denoising_strength)

        # Prepare latent tensors
        if self.motion_modules is None:
            noise = torch.randn((1, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype).repeat(num_frames, 1, 1, 1)
        else:
            noise = torch.randn((num_frames, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype)
        if input_frames is None or denoising_strength == 1.0:
            latents = noise
        else:
            latents = self.encode_images(input_frames)
            latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])

        # Encode prompts
        prompt_emb_posi = self.prompter.encode_prompt(self.text_encoder, prompt, clip_skip=clip_skip, device=self.device, positive=True).cpu()
        prompt_emb_nega = self.prompter.encode_prompt(self.text_encoder, negative_prompt, clip_skip=clip_skip, device=self.device, positive=False).cpu()
        prompt_emb_posi = prompt_emb_posi.repeat(num_frames, 1, 1)
        prompt_emb_nega = prompt_emb_nega.repeat(num_frames, 1, 1)

        # Prepare ControlNets
        if controlnet_frames is not None:
            if isinstance(controlnet_frames[0], list):
                controlnet_frames_ = []
                for processor_id in range(len(controlnet_frames)):
                    controlnet_frames_.append(
                        torch.stack([
                            self.controlnet.process_image(controlnet_frame, processor_id=processor_id).to(self.torch_dtype)
                            for controlnet_frame in progress_bar_cmd(controlnet_frames[processor_id])
                        ], dim=1)
                    )
                controlnet_frames = torch.concat(controlnet_frames_, dim=0)
            else:
                controlnet_frames = torch.stack([
                    self.controlnet.process_image(controlnet_frame).to(self.torch_dtype)
                    for controlnet_frame in progress_bar_cmd(controlnet_frames)
                ], dim=1)
        
        # Denoise
        for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
            timestep = torch.IntTensor((timestep,))[0].to(self.device)

            # Classifier-free guidance
            noise_pred_posi = lets_dance_with_long_video(
                self.unet, motion_modules=self.motion_modules, controlnet=self.controlnet,
                sample=latents, timestep=timestep, encoder_hidden_states=prompt_emb_posi, controlnet_frames=controlnet_frames,
                animatediff_batch_size=animatediff_batch_size, animatediff_stride=animatediff_stride,
                unet_batch_size=unet_batch_size, controlnet_batch_size=controlnet_batch_size,
                cross_frame_attention=cross_frame_attention,
                device=self.device, vram_limit_level=vram_limit_level
            )
            noise_pred_nega = lets_dance_with_long_video(
                self.unet, motion_modules=self.motion_modules, controlnet=self.controlnet,
                sample=latents, timestep=timestep, encoder_hidden_states=prompt_emb_nega, controlnet_frames=controlnet_frames,
                animatediff_batch_size=animatediff_batch_size, animatediff_stride=animatediff_stride,
                unet_batch_size=unet_batch_size, controlnet_batch_size=controlnet_batch_size,
                cross_frame_attention=cross_frame_attention,
                device=self.device, vram_limit_level=vram_limit_level
            )
            noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)

            # DDIM and smoother
            if smoother is not None and progress_id in smoother_progress_ids:
                rendered_frames = self.scheduler.step(noise_pred, timestep, latents, to_final=True)
                rendered_frames = self.decode_images(rendered_frames)
                rendered_frames = smoother(rendered_frames, original_frames=input_frames)
                target_latents = self.encode_images(rendered_frames)
                noise_pred = self.scheduler.return_to_timestep(timestep, latents, target_latents)
            latents = self.scheduler.step(noise_pred, timestep, latents)

            # UI
            if progress_bar_st is not None:
                progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
        
        # Decode image
        output_frames = self.decode_images(latents)

        # Post-process
        if smoother is not None and (num_inference_steps in smoother_progress_ids or -1 in smoother_progress_ids):
            output_frames = smoother(output_frames, original_frames=input_frames)

        return output_frames



class SDVideoPipelineRunner:
    def __init__(self, in_streamlit=False):
        self.in_streamlit = in_streamlit


    def load_pipeline(self, model_list, textual_inversion_folder, device, lora_alphas, controlnet_units):
        # Load models
        model_manager = ModelManager(torch_dtype=torch.float16, device=device)
        model_manager.load_textual_inversions(textual_inversion_folder)
        model_manager.load_models(model_list, lora_alphas=lora_alphas)
        pipe = SDVideoPipeline.from_model_manager(
            model_manager,
            [
                ControlNetConfigUnit(
                    processor_id=unit["processor_id"],
                    model_path=unit["model_path"],
                    scale=unit["scale"]
                ) for unit in controlnet_units
            ]
        )
        return model_manager, pipe
    

    def load_smoother(self, model_manager, smoother_configs):
        smoother = SequencialProcessor.from_model_manager(model_manager, smoother_configs)
        return smoother


    def synthesize_video(self, model_manager, pipe, seed, smoother, **pipeline_inputs):
        torch.manual_seed(seed)
        if self.in_streamlit:
            import streamlit as st
            progress_bar_st = st.progress(0.0)
            output_video = pipe(**pipeline_inputs, smoother=smoother, progress_bar_st=progress_bar_st)
            progress_bar_st.progress(1.0)
        else:
            output_video = pipe(**pipeline_inputs, smoother=smoother)
        model_manager.to("cpu")
        return output_video


    def load_video(self, video_file, image_folder, height, width, start_frame_id, end_frame_id):
        video = VideoData(video_file=video_file, image_folder=image_folder, height=height, width=width)
        if start_frame_id is None:
            start_frame_id = 0
        if end_frame_id is None:
            end_frame_id = len(video)
        frames = [video[i] for i in range(start_frame_id, end_frame_id)]
        return frames


    def add_data_to_pipeline_inputs(self, data, pipeline_inputs):
        pipeline_inputs["input_frames"] = self.load_video(**data["input_frames"])
        pipeline_inputs["num_frames"] = len(pipeline_inputs["input_frames"])
        pipeline_inputs["width"], pipeline_inputs["height"] = pipeline_inputs["input_frames"][0].size
        if len(data["controlnet_frames"]) > 0:
            pipeline_inputs["controlnet_frames"] = [self.load_video(**unit) for unit in data["controlnet_frames"]]
        return pipeline_inputs


    def save_output(self, video, output_folder, fps, config):
        os.makedirs(output_folder, exist_ok=True)
        save_frames(video, os.path.join(output_folder, "frames"))
        save_video(video, os.path.join(output_folder, "video.mp4"), fps=fps)
        config["pipeline"]["pipeline_inputs"]["input_frames"] = []
        config["pipeline"]["pipeline_inputs"]["controlnet_frames"] = []
        with open(os.path.join(output_folder, "config.json"), 'w') as file:
            json.dump(config, file, indent=4)


    def run(self, config):
        if self.in_streamlit:
            import streamlit as st
        if self.in_streamlit: st.markdown("Loading videos ...")
        config["pipeline"]["pipeline_inputs"] = self.add_data_to_pipeline_inputs(config["data"], config["pipeline"]["pipeline_inputs"])
        if self.in_streamlit: st.markdown("Loading videos ... done!")
        if self.in_streamlit: st.markdown("Loading models ...")
        model_manager, pipe = self.load_pipeline(**config["models"])
        if self.in_streamlit: st.markdown("Loading models ... done!")
        if "smoother_configs" in config:
            if self.in_streamlit: st.markdown("Loading smoother ...")
            smoother = self.load_smoother(model_manager, config["smoother_configs"])
            if self.in_streamlit: st.markdown("Loading smoother ... done!")
        else:
            smoother = None
        if self.in_streamlit: st.markdown("Synthesizing videos ...")
        output_video = self.synthesize_video(model_manager, pipe, config["pipeline"]["seed"], smoother, **config["pipeline"]["pipeline_inputs"])
        if self.in_streamlit: st.markdown("Synthesizing videos ... done!")
        if self.in_streamlit: st.markdown("Saving videos ...")
        self.save_output(output_video, config["data"]["output_folder"], config["data"]["fps"], config)
        if self.in_streamlit: st.markdown("Saving videos ... done!")
        if self.in_streamlit: st.markdown("Finished!")
        video_file = open(os.path.join(os.path.join(config["data"]["output_folder"], "video.mp4")), 'rb')
        if self.in_streamlit: st.video(video_file.read())