Spaces:
Runtime error
Runtime error
File size: 16,248 Bytes
fb4fac3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
from ..models import ModelManager, SDTextEncoder, SDUNet, SDVAEDecoder, SDVAEEncoder, SDMotionModel
from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator
from ..prompts import SDPrompter
from ..schedulers import EnhancedDDIMScheduler
from ..data import VideoData, save_frames, save_video
from .dancer import lets_dance
from ..processors.sequencial_processor import SequencialProcessor
from typing import List
import torch, os, json
from tqdm import tqdm
from PIL import Image
import numpy as np
def lets_dance_with_long_video(
unet: SDUNet,
motion_modules: SDMotionModel = None,
controlnet: MultiControlNetManager = None,
sample = None,
timestep = None,
encoder_hidden_states = None,
controlnet_frames = None,
animatediff_batch_size = 16,
animatediff_stride = 8,
unet_batch_size = 1,
controlnet_batch_size = 1,
cross_frame_attention = False,
device = "cuda",
vram_limit_level = 0,
):
num_frames = sample.shape[0]
hidden_states_output = [(torch.zeros(sample[0].shape, dtype=sample[0].dtype), 0) for i in range(num_frames)]
for batch_id in range(0, num_frames, animatediff_stride):
batch_id_ = min(batch_id + animatediff_batch_size, num_frames)
# process this batch
hidden_states_batch = lets_dance(
unet, motion_modules, controlnet,
sample[batch_id: batch_id_].to(device),
timestep,
encoder_hidden_states[batch_id: batch_id_].to(device),
controlnet_frames=controlnet_frames[:, batch_id: batch_id_].to(device) if controlnet_frames is not None else None,
unet_batch_size=unet_batch_size, controlnet_batch_size=controlnet_batch_size,
cross_frame_attention=cross_frame_attention,
device=device, vram_limit_level=vram_limit_level
).cpu()
# update hidden_states
for i, hidden_states_updated in zip(range(batch_id, batch_id_), hidden_states_batch):
bias = max(1 - abs(i - (batch_id + batch_id_ - 1) / 2) / ((batch_id_ - batch_id - 1 + 1e-2) / 2), 1e-2)
hidden_states, num = hidden_states_output[i]
hidden_states = hidden_states * (num / (num + bias)) + hidden_states_updated * (bias / (num + bias))
hidden_states_output[i] = (hidden_states, num + bias)
if batch_id_ == num_frames:
break
# output
hidden_states = torch.stack([h for h, _ in hidden_states_output])
return hidden_states
class SDVideoPipeline(torch.nn.Module):
def __init__(self, device="cuda", torch_dtype=torch.float16, use_animatediff=True):
super().__init__()
self.scheduler = EnhancedDDIMScheduler(beta_schedule="linear" if use_animatediff else "scaled_linear")
self.prompter = SDPrompter()
self.device = device
self.torch_dtype = torch_dtype
# models
self.text_encoder: SDTextEncoder = None
self.unet: SDUNet = None
self.vae_decoder: SDVAEDecoder = None
self.vae_encoder: SDVAEEncoder = None
self.controlnet: MultiControlNetManager = None
self.motion_modules: SDMotionModel = None
def fetch_main_models(self, model_manager: ModelManager):
self.text_encoder = model_manager.text_encoder
self.unet = model_manager.unet
self.vae_decoder = model_manager.vae_decoder
self.vae_encoder = model_manager.vae_encoder
def fetch_controlnet_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[]):
controlnet_units = []
for config in controlnet_config_units:
controlnet_unit = ControlNetUnit(
Annotator(config.processor_id, device=self.device),
model_manager.get_model_with_model_path(config.model_path),
config.scale
)
controlnet_units.append(controlnet_unit)
self.controlnet = MultiControlNetManager(controlnet_units)
def fetch_motion_modules(self, model_manager: ModelManager):
if "motion_modules" in model_manager.model:
self.motion_modules = model_manager.motion_modules
def fetch_prompter(self, model_manager: ModelManager):
self.prompter.load_from_model_manager(model_manager)
@staticmethod
def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[]):
pipe = SDVideoPipeline(
device=model_manager.device,
torch_dtype=model_manager.torch_dtype,
use_animatediff="motion_modules" in model_manager.model
)
pipe.fetch_main_models(model_manager)
pipe.fetch_motion_modules(model_manager)
pipe.fetch_prompter(model_manager)
pipe.fetch_controlnet_models(model_manager, controlnet_config_units)
return pipe
def preprocess_image(self, image):
image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0)
return image
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32):
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0]
image = image.cpu().permute(1, 2, 0).numpy()
image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8"))
return image
def decode_images(self, latents, tiled=False, tile_size=64, tile_stride=32):
images = [
self.decode_image(latents[frame_id: frame_id+1], tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
for frame_id in range(latents.shape[0])
]
return images
def encode_images(self, processed_images, tiled=False, tile_size=64, tile_stride=32):
latents = []
for image in processed_images:
image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype)
latent = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).cpu()
latents.append(latent)
latents = torch.concat(latents, dim=0)
return latents
@torch.no_grad()
def __call__(
self,
prompt,
negative_prompt="",
cfg_scale=7.5,
clip_skip=1,
num_frames=None,
input_frames=None,
controlnet_frames=None,
denoising_strength=1.0,
height=512,
width=512,
num_inference_steps=20,
animatediff_batch_size = 16,
animatediff_stride = 8,
unet_batch_size = 1,
controlnet_batch_size = 1,
cross_frame_attention = False,
smoother=None,
smoother_progress_ids=[],
vram_limit_level=0,
progress_bar_cmd=tqdm,
progress_bar_st=None,
):
# Prepare scheduler
self.scheduler.set_timesteps(num_inference_steps, denoising_strength)
# Prepare latent tensors
if self.motion_modules is None:
noise = torch.randn((1, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype).repeat(num_frames, 1, 1, 1)
else:
noise = torch.randn((num_frames, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype)
if input_frames is None or denoising_strength == 1.0:
latents = noise
else:
latents = self.encode_images(input_frames)
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
# Encode prompts
prompt_emb_posi = self.prompter.encode_prompt(self.text_encoder, prompt, clip_skip=clip_skip, device=self.device, positive=True).cpu()
prompt_emb_nega = self.prompter.encode_prompt(self.text_encoder, negative_prompt, clip_skip=clip_skip, device=self.device, positive=False).cpu()
prompt_emb_posi = prompt_emb_posi.repeat(num_frames, 1, 1)
prompt_emb_nega = prompt_emb_nega.repeat(num_frames, 1, 1)
# Prepare ControlNets
if controlnet_frames is not None:
if isinstance(controlnet_frames[0], list):
controlnet_frames_ = []
for processor_id in range(len(controlnet_frames)):
controlnet_frames_.append(
torch.stack([
self.controlnet.process_image(controlnet_frame, processor_id=processor_id).to(self.torch_dtype)
for controlnet_frame in progress_bar_cmd(controlnet_frames[processor_id])
], dim=1)
)
controlnet_frames = torch.concat(controlnet_frames_, dim=0)
else:
controlnet_frames = torch.stack([
self.controlnet.process_image(controlnet_frame).to(self.torch_dtype)
for controlnet_frame in progress_bar_cmd(controlnet_frames)
], dim=1)
# Denoise
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
timestep = torch.IntTensor((timestep,))[0].to(self.device)
# Classifier-free guidance
noise_pred_posi = lets_dance_with_long_video(
self.unet, motion_modules=self.motion_modules, controlnet=self.controlnet,
sample=latents, timestep=timestep, encoder_hidden_states=prompt_emb_posi, controlnet_frames=controlnet_frames,
animatediff_batch_size=animatediff_batch_size, animatediff_stride=animatediff_stride,
unet_batch_size=unet_batch_size, controlnet_batch_size=controlnet_batch_size,
cross_frame_attention=cross_frame_attention,
device=self.device, vram_limit_level=vram_limit_level
)
noise_pred_nega = lets_dance_with_long_video(
self.unet, motion_modules=self.motion_modules, controlnet=self.controlnet,
sample=latents, timestep=timestep, encoder_hidden_states=prompt_emb_nega, controlnet_frames=controlnet_frames,
animatediff_batch_size=animatediff_batch_size, animatediff_stride=animatediff_stride,
unet_batch_size=unet_batch_size, controlnet_batch_size=controlnet_batch_size,
cross_frame_attention=cross_frame_attention,
device=self.device, vram_limit_level=vram_limit_level
)
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
# DDIM and smoother
if smoother is not None and progress_id in smoother_progress_ids:
rendered_frames = self.scheduler.step(noise_pred, timestep, latents, to_final=True)
rendered_frames = self.decode_images(rendered_frames)
rendered_frames = smoother(rendered_frames, original_frames=input_frames)
target_latents = self.encode_images(rendered_frames)
noise_pred = self.scheduler.return_to_timestep(timestep, latents, target_latents)
latents = self.scheduler.step(noise_pred, timestep, latents)
# UI
if progress_bar_st is not None:
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
# Decode image
output_frames = self.decode_images(latents)
# Post-process
if smoother is not None and (num_inference_steps in smoother_progress_ids or -1 in smoother_progress_ids):
output_frames = smoother(output_frames, original_frames=input_frames)
return output_frames
class SDVideoPipelineRunner:
def __init__(self, in_streamlit=False):
self.in_streamlit = in_streamlit
def load_pipeline(self, model_list, textual_inversion_folder, device, lora_alphas, controlnet_units):
# Load models
model_manager = ModelManager(torch_dtype=torch.float16, device=device)
model_manager.load_textual_inversions(textual_inversion_folder)
model_manager.load_models(model_list, lora_alphas=lora_alphas)
pipe = SDVideoPipeline.from_model_manager(
model_manager,
[
ControlNetConfigUnit(
processor_id=unit["processor_id"],
model_path=unit["model_path"],
scale=unit["scale"]
) for unit in controlnet_units
]
)
return model_manager, pipe
def load_smoother(self, model_manager, smoother_configs):
smoother = SequencialProcessor.from_model_manager(model_manager, smoother_configs)
return smoother
def synthesize_video(self, model_manager, pipe, seed, smoother, **pipeline_inputs):
torch.manual_seed(seed)
if self.in_streamlit:
import streamlit as st
progress_bar_st = st.progress(0.0)
output_video = pipe(**pipeline_inputs, smoother=smoother, progress_bar_st=progress_bar_st)
progress_bar_st.progress(1.0)
else:
output_video = pipe(**pipeline_inputs, smoother=smoother)
model_manager.to("cpu")
return output_video
def load_video(self, video_file, image_folder, height, width, start_frame_id, end_frame_id):
video = VideoData(video_file=video_file, image_folder=image_folder, height=height, width=width)
if start_frame_id is None:
start_frame_id = 0
if end_frame_id is None:
end_frame_id = len(video)
frames = [video[i] for i in range(start_frame_id, end_frame_id)]
return frames
def add_data_to_pipeline_inputs(self, data, pipeline_inputs):
pipeline_inputs["input_frames"] = self.load_video(**data["input_frames"])
pipeline_inputs["num_frames"] = len(pipeline_inputs["input_frames"])
pipeline_inputs["width"], pipeline_inputs["height"] = pipeline_inputs["input_frames"][0].size
if len(data["controlnet_frames"]) > 0:
pipeline_inputs["controlnet_frames"] = [self.load_video(**unit) for unit in data["controlnet_frames"]]
return pipeline_inputs
def save_output(self, video, output_folder, fps, config):
os.makedirs(output_folder, exist_ok=True)
save_frames(video, os.path.join(output_folder, "frames"))
save_video(video, os.path.join(output_folder, "video.mp4"), fps=fps)
config["pipeline"]["pipeline_inputs"]["input_frames"] = []
config["pipeline"]["pipeline_inputs"]["controlnet_frames"] = []
with open(os.path.join(output_folder, "config.json"), 'w') as file:
json.dump(config, file, indent=4)
def run(self, config):
if self.in_streamlit:
import streamlit as st
if self.in_streamlit: st.markdown("Loading videos ...")
config["pipeline"]["pipeline_inputs"] = self.add_data_to_pipeline_inputs(config["data"], config["pipeline"]["pipeline_inputs"])
if self.in_streamlit: st.markdown("Loading videos ... done!")
if self.in_streamlit: st.markdown("Loading models ...")
model_manager, pipe = self.load_pipeline(**config["models"])
if self.in_streamlit: st.markdown("Loading models ... done!")
if "smoother_configs" in config:
if self.in_streamlit: st.markdown("Loading smoother ...")
smoother = self.load_smoother(model_manager, config["smoother_configs"])
if self.in_streamlit: st.markdown("Loading smoother ... done!")
else:
smoother = None
if self.in_streamlit: st.markdown("Synthesizing videos ...")
output_video = self.synthesize_video(model_manager, pipe, config["pipeline"]["seed"], smoother, **config["pipeline"]["pipeline_inputs"])
if self.in_streamlit: st.markdown("Synthesizing videos ... done!")
if self.in_streamlit: st.markdown("Saving videos ...")
self.save_output(output_video, config["data"]["output_folder"], config["data"]["fps"], config)
if self.in_streamlit: st.markdown("Saving videos ... done!")
if self.in_streamlit: st.markdown("Finished!")
video_file = open(os.path.join(os.path.join(config["data"]["output_folder"], "video.mp4")), 'rb')
if self.in_streamlit: st.video(video_file.read())
|