|
import os |
|
import sys |
|
|
|
os.system("git clone https://github.com/C0untFloyd/bark-gui.git") |
|
sys.path.append("./bark-gui/") |
|
|
|
from cProfile import label |
|
from distutils.command.check import check |
|
from doctest import Example |
|
import dataclasses |
|
import gradio as gr |
|
import numpy as np |
|
import logging |
|
import torch |
|
import pytorch_seed |
|
import time |
|
|
|
import torchaudio |
|
from speechbrain.pretrained import SpectralMaskEnhancement |
|
|
|
enhance_model = SpectralMaskEnhancement.from_hparams( |
|
source="speechbrain/metricgan-plus-voicebank", |
|
savedir="pretrained_models/metricgan-plus-voicebank", |
|
run_opts={"device":"cuda"}, |
|
) |
|
|
|
from xml.sax import saxutils |
|
from bark.api import generate_with_settings |
|
from bark.api import save_as_prompt |
|
from settings import Settings |
|
|
|
|
|
from bark import SAMPLE_RATE |
|
from bark.clonevoice import clone_voice |
|
from bark.generation import SAMPLE_RATE, preload_models, _load_history_prompt, codec_decode |
|
from scipy.io.wavfile import write as write_wav |
|
from parseinput import split_and_recombine_text, build_ssml, is_ssml, create_clips_from_ssml |
|
from datetime import datetime |
|
from tqdm.auto import tqdm |
|
from id3tagging import add_id3_tag |
|
|
|
import shutil |
|
|
|
import string |
|
import argparse |
|
import json |
|
|
|
import gc, copy |
|
from datetime import datetime |
|
from huggingface_hub import hf_hub_download |
|
from pynvml import * |
|
nvmlInit() |
|
gpu_h = nvmlDeviceGetHandleByIndex(0) |
|
ctx_limit = 1536 |
|
title = "RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192" |
|
|
|
os.environ["RWKV_JIT_ON"] = '1' |
|
os.environ["RWKV_CUDA_ON"] = '1' |
|
|
|
from rwkv.model import RWKV |
|
model_path1 = hf_hub_download(repo_id="BlinkDL/rwkv-4-raven", filename=f"{title}.pth") |
|
model1 = RWKV(model=model_path1, strategy='cuda fp16i8 *8 -> cuda fp16') |
|
from rwkv.utils import PIPELINE, PIPELINE_ARGS |
|
pipeline = PIPELINE(model1, "20B_tokenizer.json") |
|
|
|
def generate_prompt(instruction, input=None): |
|
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n') |
|
input = input.strip().replace('\r\n','\n').replace('\n\n','\n') |
|
if input: |
|
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
# Instruction: |
|
{instruction} |
|
# Input: |
|
{input} |
|
# Response: |
|
""" |
|
else: |
|
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
# Instruction: |
|
{instruction} |
|
# Response: |
|
""" |
|
|
|
def evaluate( |
|
instruction, |
|
input=None, |
|
token_count=200, |
|
temperature=1.0, |
|
top_p=0.7, |
|
presencePenalty = 0.1, |
|
countPenalty = 0.1, |
|
): |
|
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p), |
|
alpha_frequency = countPenalty, |
|
alpha_presence = presencePenalty, |
|
token_ban = [], |
|
token_stop = [0]) |
|
|
|
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n') |
|
input = input.strip().replace('\r\n','\n').replace('\n\n','\n') |
|
ctx = generate_prompt(instruction, input) |
|
|
|
all_tokens = [] |
|
out_last = 0 |
|
out_str = '' |
|
occurrence = {} |
|
state = None |
|
for i in range(int(token_count)): |
|
out, state = model1.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state) |
|
for n in occurrence: |
|
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency) |
|
|
|
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p) |
|
if token in args.token_stop: |
|
break |
|
all_tokens += [token] |
|
if token not in occurrence: |
|
occurrence[token] = 1 |
|
else: |
|
occurrence[token] += 1 |
|
|
|
tmp = pipeline.decode(all_tokens[out_last:]) |
|
if '\ufffd' not in tmp: |
|
out_str += tmp |
|
yield out_str.strip() |
|
out_last = i + 1 |
|
|
|
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h) |
|
print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}') |
|
del out |
|
del state |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
yield out_str.strip() |
|
|
|
examples = [ |
|
["Tell me about ravens.", "", 300, 1.2, 0.5, 0.4, 0.4], |
|
["Write a python function to mine 1 BTC, with details and comments.", "", 300, 1.2, 0.5, 0.4, 0.4], |
|
["Write a song about ravens.", "", 300, 1.2, 0.5, 0.4, 0.4], |
|
["Explain the following metaphor: Life is like cats.", "", 300, 1.2, 0.5, 0.4, 0.4], |
|
["Write a story using the following information", "A man named Alex chops a tree down", 300, 1.2, 0.5, 0.4, 0.4], |
|
["Generate a list of adjectives that describe a person as brave.", "", 300, 1.2, 0.5, 0.4, 0.4], |
|
["You have $100, and your goal is to turn that into as much money as possible with AI and Machine Learning. Please respond with detailed plan.", "", 300, 1.2, 0.5, 0.4, 0.4], |
|
] |
|
|
|
|
|
|
|
chat_intro = '''The following is a coherent verbose detailed conversation between <|user|> and an AI girl named <|bot|>. |
|
<|user|>: Hi <|bot|>, Would you like to chat with me for a while? |
|
<|bot|>: Hi <|user|>. Sure. What would you like to talk about? I'm listening. |
|
''' |
|
|
|
def user(message, chatbot): |
|
chatbot = chatbot or [] |
|
|
|
return "", chatbot + [[message, None]] |
|
|
|
def alternative(chatbot, history): |
|
if not chatbot or not history: |
|
return chatbot, history |
|
|
|
chatbot[-1][1] = None |
|
history[0] = copy.deepcopy(history[1]) |
|
|
|
return chatbot, history |
|
|
|
def chat( |
|
prompt, |
|
user, |
|
bot, |
|
chatbot, |
|
history, |
|
temperature=1.0, |
|
top_p=0.8, |
|
presence_penalty=0.1, |
|
count_penalty=0.1, |
|
): |
|
args = PIPELINE_ARGS(temperature=max(0.2, float(temperature)), top_p=float(top_p), |
|
alpha_frequency=float(count_penalty), |
|
alpha_presence=float(presence_penalty), |
|
token_ban=[], |
|
token_stop=[]) |
|
|
|
if not chatbot: |
|
return chatbot, history |
|
|
|
message = chatbot[-1][0] |
|
message = message.strip().replace('\r\n','\n').replace('\n\n','\n') |
|
ctx = f"{user}: {message}\n\n{bot}:" |
|
|
|
if not history: |
|
prompt = prompt.replace("<|user|>", user.strip()) |
|
prompt = prompt.replace("<|bot|>", bot.strip()) |
|
prompt = prompt.strip() |
|
prompt = f"\n{prompt}\n\n" |
|
|
|
out, state = model1.forward(pipeline.encode(prompt), None) |
|
history = [state, None, []] |
|
|
|
|
|
[state, _, all_tokens] = history |
|
state_pre_0 = copy.deepcopy(state) |
|
|
|
out, state = model1.forward(pipeline.encode(ctx)[-ctx_limit:], state) |
|
state_pre_1 = copy.deepcopy(state) |
|
|
|
|
|
|
|
begin = len(all_tokens) |
|
out_last = begin |
|
out_str: str = '' |
|
occurrence = {} |
|
for i in range(300): |
|
if i <= 0: |
|
nl_bias = -float('inf') |
|
elif i <= 30: |
|
nl_bias = (i - 30) * 0.1 |
|
elif i <= 130: |
|
nl_bias = 0 |
|
else: |
|
nl_bias = (i - 130) * 0.25 |
|
out[187] += nl_bias |
|
for n in occurrence: |
|
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency) |
|
|
|
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p) |
|
next_tokens = [token] |
|
if token == 0: |
|
next_tokens = pipeline.encode('\n\n') |
|
all_tokens += next_tokens |
|
|
|
if token not in occurrence: |
|
occurrence[token] = 1 |
|
else: |
|
occurrence[token] += 1 |
|
|
|
out, state = model1.forward(next_tokens, state) |
|
|
|
tmp = pipeline.decode(all_tokens[out_last:]) |
|
if '\ufffd' not in tmp: |
|
|
|
out_last = begin + i + 1 |
|
out_str += tmp |
|
|
|
chatbot[-1][1] = out_str.strip() |
|
history = [state, all_tokens] |
|
yield chatbot, history |
|
|
|
out_str = pipeline.decode(all_tokens[begin:]) |
|
out_str = out_str.replace("\r\n", '\n').replace('\\n', '\n') |
|
|
|
if '\n\n' in out_str: |
|
break |
|
|
|
|
|
if f'{user}:' in out_str or f'{bot}:' in out_str: |
|
idx_user = out_str.find(f'{user}:') |
|
idx_user = len(out_str) if idx_user == -1 else idx_user |
|
idx_bot = out_str.find(f'{bot}:') |
|
idx_bot = len(out_str) if idx_bot == -1 else idx_bot |
|
idx = min(idx_user, idx_bot) |
|
|
|
if idx < len(out_str): |
|
out_str = f" {out_str[:idx].strip()}\n\n" |
|
tokens = pipeline.encode(out_str) |
|
|
|
all_tokens = all_tokens[:begin] + tokens |
|
out, state = model1.forward(tokens, state_pre_1) |
|
break |
|
|
|
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h) |
|
print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}') |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
chatbot[-1][1] = out_str.strip() |
|
history = [state, state_pre_0, all_tokens] |
|
yield chatbot, history |
|
|
|
from TTS.tts.utils.synthesis import synthesis |
|
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols |
|
try: |
|
from TTS.utils.audio import AudioProcessor |
|
except: |
|
from TTS.utils.audio import AudioProcessor |
|
|
|
|
|
from TTS.tts.models import setup_model |
|
from TTS.config import load_config |
|
from TTS.tts.models.vits import * |
|
|
|
from TTS.tts.utils.speakers import SpeakerManager |
|
from pydub import AudioSegment |
|
|
|
|
|
import librosa |
|
|
|
from scipy.io.wavfile import write, read |
|
|
|
import subprocess |
|
|
|
|
|
OUTPUTFOLDER = "Outputs" |
|
|
|
def speechbrain(aud): |
|
|
|
noisy = enhance_model.load_audio( |
|
aud |
|
).unsqueeze(0) |
|
enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.])) |
|
torchaudio.save('enhanced.wav', enhanced.cpu(), 16000) |
|
return 'enhanced.wav' |
|
|
|
def generate_text_to_speech(text, selected_speaker, text_temp, waveform_temp, eos_prob, quick_generation, complete_settings, seed, batchcount, progress=gr.Progress(track_tqdm=True)): |
|
|
|
|
|
|
|
if selected_speaker == 'None': |
|
selected_speaker = None |
|
|
|
voice_name = selected_speaker |
|
|
|
if text == None or len(text) < 1: |
|
if selected_speaker == None: |
|
raise gr.Error('No text entered!') |
|
|
|
|
|
voicedata = _load_history_prompt(voice_name) |
|
audio_arr = codec_decode(voicedata["fine_prompt"]) |
|
result = create_filename(OUTPUTFOLDER, "None", "extract",".wav") |
|
save_wav(audio_arr, result) |
|
return result |
|
|
|
if batchcount < 1: |
|
batchcount = 1 |
|
|
|
|
|
silenceshort = np.zeros(int((float(settings.silence_sentence) / 1000.0) * SAMPLE_RATE), dtype=np.int16) |
|
silencelong = np.zeros(int((float(settings.silence_speakers) / 1000.0) * SAMPLE_RATE), dtype=np.float32) |
|
use_last_generation_as_history = "Use last generation as history" in complete_settings |
|
save_last_generation = "Save generation as Voice" in complete_settings |
|
for l in range(batchcount): |
|
currentseed = seed |
|
if seed != None and seed > 2**32 - 1: |
|
logger.warning(f"Seed {seed} > 2**32 - 1 (max), setting to random") |
|
currentseed = None |
|
if currentseed == None or currentseed <= 0: |
|
currentseed = np.random.default_rng().integers(1, 2**32 - 1) |
|
assert(0 < currentseed and currentseed < 2**32) |
|
|
|
progress(0, desc="Generating") |
|
|
|
full_generation = None |
|
|
|
all_parts = [] |
|
complete_text = "" |
|
text = text.lstrip() |
|
if is_ssml(text): |
|
list_speak = create_clips_from_ssml(text) |
|
prev_speaker = None |
|
for i, clip in tqdm(enumerate(list_speak), total=len(list_speak)): |
|
selected_speaker = clip[0] |
|
|
|
if i > 0 and selected_speaker != prev_speaker: |
|
all_parts += [silencelong.copy()] |
|
prev_speaker = selected_speaker |
|
text = clip[1] |
|
text = saxutils.unescape(text) |
|
if selected_speaker == "None": |
|
selected_speaker = None |
|
|
|
print(f"\nGenerating Text ({i+1}/{len(list_speak)}) -> {selected_speaker} (Seed {currentseed}):`{text}`") |
|
complete_text += text |
|
with pytorch_seed.SavedRNG(currentseed): |
|
audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob) |
|
currentseed = torch.random.initial_seed() |
|
if len(list_speak) > 1: |
|
filename = create_filename(OUTPUTFOLDER, currentseed, "audioclip",".wav") |
|
save_wav(audio_array, filename) |
|
add_id3_tag(filename, text, selected_speaker, currentseed) |
|
|
|
all_parts += [audio_array] |
|
else: |
|
texts = split_and_recombine_text(text, settings.input_text_desired_length, settings.input_text_max_length) |
|
for i, text in tqdm(enumerate(texts), total=len(texts)): |
|
print(f"\nGenerating Text ({i+1}/{len(texts)}) -> {selected_speaker} (Seed {currentseed}):`{text}`") |
|
complete_text += text |
|
if quick_generation == True: |
|
with pytorch_seed.SavedRNG(currentseed): |
|
audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob) |
|
currentseed = torch.random.initial_seed() |
|
else: |
|
full_output = use_last_generation_as_history or save_last_generation |
|
if full_output: |
|
full_generation, audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob, output_full=True) |
|
else: |
|
audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob) |
|
|
|
|
|
|
|
|
|
if len(texts) > 1: |
|
filename = create_filename(OUTPUTFOLDER, currentseed, "audioclip",".wav") |
|
save_wav(audio_array, filename) |
|
add_id3_tag(filename, text, selected_speaker, currentseed) |
|
|
|
if quick_generation == False and (save_last_generation == True or use_last_generation_as_history == True): |
|
|
|
voice_name = create_filename(OUTPUTFOLDER, seed, "audioclip", ".npz") |
|
save_as_prompt(voice_name, full_generation) |
|
if use_last_generation_as_history: |
|
selected_speaker = voice_name |
|
|
|
all_parts += [audio_array] |
|
|
|
if text[-1] in "!?.\n" and i > 1: |
|
all_parts += [silenceshort.copy()] |
|
|
|
|
|
result = create_filename(OUTPUTFOLDER, currentseed, "final",".wav") |
|
save_wav(np.concatenate(all_parts), result) |
|
|
|
add_id3_tag(result, complete_text, selected_speaker, currentseed) |
|
|
|
return result |
|
|
|
def create_filename(path, seed, name, extension): |
|
now = datetime.now() |
|
date_str =now.strftime("%m-%d-%Y") |
|
outputs_folder = os.path.join(os.getcwd(), path) |
|
if not os.path.exists(outputs_folder): |
|
os.makedirs(outputs_folder) |
|
|
|
sub_folder = os.path.join(outputs_folder, date_str) |
|
if not os.path.exists(sub_folder): |
|
os.makedirs(sub_folder) |
|
|
|
time_str = now.strftime("%H-%M-%S") |
|
file_name = f"{name}_{time_str}_s{seed}{extension}" |
|
return os.path.join(sub_folder, file_name) |
|
|
|
|
|
def save_wav(audio_array, filename): |
|
write_wav(filename, SAMPLE_RATE, audio_array) |
|
|
|
def save_voice(filename, semantic_prompt, coarse_prompt, fine_prompt): |
|
np.savez_compressed( |
|
filename, |
|
semantic_prompt=semantic_prompt, |
|
coarse_prompt=coarse_prompt, |
|
fine_prompt=fine_prompt |
|
) |
|
|
|
|
|
def on_quick_gen_changed(checkbox): |
|
if checkbox == False: |
|
return gr.CheckboxGroup.update(visible=True) |
|
return gr.CheckboxGroup.update(visible=False) |
|
|
|
def delete_output_files(checkbox_state): |
|
if checkbox_state: |
|
outputs_folder = os.path.join(os.getcwd(), OUTPUTFOLDER) |
|
if os.path.exists(outputs_folder): |
|
purgedir(outputs_folder) |
|
return False |
|
|
|
|
|
|
|
def purgedir(parent): |
|
for root, dirs, files in os.walk(parent): |
|
for item in files: |
|
|
|
filespec = os.path.join(root, item) |
|
os.unlink(filespec) |
|
for item in dirs: |
|
|
|
purgedir(os.path.join(root, item)) |
|
|
|
def convert_text_to_ssml(text, selected_speaker): |
|
return build_ssml(text, selected_speaker) |
|
|
|
|
|
def apply_settings(themes, input_server_name, input_server_port, input_server_public, input_desired_len, input_max_len, input_silence_break, input_silence_speaker): |
|
settings.selected_theme = themes |
|
settings.server_name = input_server_name |
|
settings.server_port = input_server_port |
|
settings.server_share = input_server_public |
|
settings.input_text_desired_length = input_desired_len |
|
settings.input_text_max_length = input_max_len |
|
settings.silence_sentence = input_silence_break |
|
settings.silence_speaker = input_silence_speaker |
|
settings.save() |
|
|
|
def restart(): |
|
global restart_server |
|
restart_server = True |
|
|
|
|
|
def create_version_html(): |
|
python_version = ".".join([str(x) for x in sys.version_info[0:3]]) |
|
versions_html = f""" |
|
python: <span title="{sys.version}">{python_version}</span> |
|
• |
|
torch: {getattr(torch, '__long_version__',torch.__version__)} |
|
• |
|
gradio: {gr.__version__} |
|
""" |
|
return versions_html |
|
|
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
APPTITLE = "Bark UI Enhanced v0.4.8" |
|
|
|
|
|
autolaunch = False |
|
|
|
if len(sys.argv) > 1: |
|
autolaunch = "-autolaunch" in sys.argv |
|
|
|
|
|
if torch.cuda.is_available() == False: |
|
os.environ['BARK_FORCE_CPU'] = 'True' |
|
logger.warning("No CUDA detected, fallback to CPU!") |
|
|
|
print(f'smallmodels={os.environ.get("SUNO_USE_SMALL_MODELS", False)}') |
|
print(f'enablemps={os.environ.get("SUNO_ENABLE_MPS", False)}') |
|
print(f'offloadcpu={os.environ.get("SUNO_OFFLOAD_CPU", False)}') |
|
print(f'forcecpu={os.environ.get("BARK_FORCE_CPU", False)}') |
|
print(f'autolaunch={autolaunch}\n\n') |
|
|
|
|
|
|
|
|
|
print("Preloading Models\n") |
|
preload_models() |
|
|
|
settings = Settings('config.yaml') |
|
|
|
|
|
speakers_list = [] |
|
|
|
for root, dirs, files in os.walk("./bark/assets/prompts"): |
|
for file in files: |
|
if(file.endswith(".npz")): |
|
pathpart = root.replace("./bark/assets/prompts", "") |
|
name = os.path.join(pathpart, file[:-4]) |
|
if name.startswith("/") or name.startswith("\\"): |
|
name = name[1:] |
|
speakers_list.append(name) |
|
|
|
speakers_list = sorted(speakers_list, key=lambda x: x.lower()) |
|
speakers_list.insert(0, 'None') |
|
|
|
available_themes = ["Default", "gradio/glass", "gradio/monochrome", "gradio/seafoam", "gradio/soft", "gstaff/xkcd", "freddyaboulton/dracula_revamped", "ysharma/steampunk"] |
|
|
|
seed = -1 |
|
server_name = settings.server_name |
|
if len(server_name) < 1: |
|
server_name = None |
|
server_port = settings.server_port |
|
if server_port <= 0: |
|
server_port = None |
|
global run_server |
|
global restart_server |
|
|
|
run_server = True |
|
|
|
|
|
|
|
|
|
|
|
''' |
|
from google.colab import drive |
|
drive.mount('/content/drive') |
|
src_path = os.path.join(os.path.join(os.path.join(os.path.join(os.getcwd(), 'drive'), 'MyDrive'), 'Colab Notebooks'), 'best_model_latest.pth.tar') |
|
dst_path = os.path.join(os.getcwd(), 'best_model.pth.tar') |
|
shutil.copy(src_path, dst_path) |
|
''' |
|
|
|
TTS_PATH = "TTS/" |
|
|
|
|
|
sys.path.append(TTS_PATH) |
|
|
|
|
|
|
|
OUT_PATH = 'out/' |
|
|
|
|
|
os.makedirs(OUT_PATH, exist_ok=True) |
|
|
|
|
|
MODEL_PATH = 'best_model.pth.tar' |
|
CONFIG_PATH = 'config.json' |
|
TTS_LANGUAGES = "language_ids.json" |
|
TTS_SPEAKERS = "speakers.json" |
|
USE_CUDA = torch.cuda.is_available() |
|
|
|
|
|
C = load_config(CONFIG_PATH) |
|
|
|
|
|
ap = AudioProcessor(**C.audio) |
|
|
|
speaker_embedding = None |
|
|
|
C.model_args['d_vector_file'] = TTS_SPEAKERS |
|
C.model_args['use_speaker_encoder_as_loss'] = False |
|
|
|
model = setup_model(C) |
|
model.language_manager.set_language_ids_from_file(TTS_LANGUAGES) |
|
|
|
|
|
cp = torch.load(MODEL_PATH, map_location=torch.device('cpu')) |
|
|
|
model_weights = cp['model'].copy() |
|
for key in list(model_weights.keys()): |
|
if "speaker_encoder" in key: |
|
del model_weights[key] |
|
|
|
model.load_state_dict(model_weights) |
|
|
|
model.eval() |
|
|
|
if USE_CUDA: |
|
model = model.cuda() |
|
|
|
|
|
use_griffin_lim = False |
|
|
|
|
|
|
|
CONFIG_SE_PATH = "config_se.json" |
|
CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar" |
|
|
|
|
|
|
|
SE_speaker_manager = SpeakerManager(encoder_model_path=CHECKPOINT_SE_PATH, encoder_config_path=CONFIG_SE_PATH, use_cuda=USE_CUDA) |
|
|
|
|
|
|
|
def compute_spec(ref_file): |
|
y, sr = librosa.load(ref_file, sr=ap.sample_rate) |
|
spec = ap.spectrogram(y) |
|
spec = torch.FloatTensor(spec).unsqueeze(0) |
|
return spec |
|
|
|
|
|
def voice_conversion(ta, ra, da): |
|
|
|
target_audio = 'target.wav' |
|
reference_audio = 'reference.wav' |
|
driving_audio = 'driving.wav' |
|
|
|
write(target_audio, ta[0], ta[1]) |
|
write(reference_audio, ra[0], ra[1]) |
|
write(driving_audio, da[0], da[1]) |
|
|
|
|
|
|
|
|
|
|
|
files = [target_audio, reference_audio, driving_audio] |
|
|
|
for file in files: |
|
subprocess.run(["ffmpeg-normalize", file, "-nt", "rms", "-t=-27", "-o", file, "-ar", "16000", "-f"]) |
|
|
|
|
|
|
|
target_emb = SE_speaker_manager.compute_d_vector_from_clip([target_audio]) |
|
target_emb = torch.FloatTensor(target_emb).unsqueeze(0) |
|
|
|
driving_emb = SE_speaker_manager.compute_d_vector_from_clip([reference_audio]) |
|
driving_emb = torch.FloatTensor(driving_emb).unsqueeze(0) |
|
|
|
|
|
|
|
driving_spec = compute_spec(driving_audio) |
|
y_lengths = torch.tensor([driving_spec.size(-1)]) |
|
if USE_CUDA: |
|
ref_wav_voc, _, _ = model.voice_conversion(driving_spec.cuda(), y_lengths.cuda(), driving_emb.cuda(), target_emb.cuda()) |
|
ref_wav_voc = ref_wav_voc.squeeze().cpu().detach().numpy() |
|
else: |
|
ref_wav_voc, _, _ = model.voice_conversion(driving_spec, y_lengths, driving_emb, target_emb) |
|
ref_wav_voc = ref_wav_voc.squeeze().detach().numpy() |
|
|
|
|
|
|
|
|
|
return (ap.sample_rate, ref_wav_voc) |
|
|
|
|
|
while run_server: |
|
print(f'Launching {APPTITLE} Server') |
|
|
|
|
|
|
|
with gr.Blocks(title=f"{APPTITLE}", mode=f"{APPTITLE}", theme=settings.selected_theme) as barkgui: |
|
gr.Markdown("# <center>🐶🥳🎶 - Bark拟声,开启声音真实复刻的新纪元!</center>") |
|
gr.Markdown("### <center>🦄 - [Bark](https://github.com/suno-ai/bark)拟声,能够实现语音、语调及说话情感的真实复刻</center>") |
|
gr.Markdown( |
|
f""" |
|
### <center>🤗 - Powered by [Bark Enhanced](https://github.com/C0untFloyd/bark-gui). Thanks to C0untFloyd.</center> |
|
### <center>1. 您可以复制该程序并用GPU运行: <a href="https://huggingface.co/spaces/{os.getenv('SPACE_ID')}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></center> |
|
### <center>2. 更多精彩应用,尽在[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center> |
|
""" |
|
) |
|
with gr.Tab("🐶 - Bark拟声"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
placeholder = "想让Bark说些什么呢?" |
|
input_text = gr.Textbox(label="用作声音合成的文本", lines=4, placeholder=placeholder) |
|
with gr.Column(): |
|
convert_to_ssml_button = gr.Button("Convert Input Text to SSML") |
|
seedcomponent = gr.Number(label="Seed (default -1 = Random)", precision=0, value=-1) |
|
batchcount = gr.Number(label="Batch count", precision=0, value=1) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown("查看Bark官方[语言库](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c)") |
|
speaker = gr.Dropdown(speakers_list, value=speakers_list[0], label="中英双语的不同声音供您选择") |
|
with gr.Column(): |
|
text_temp = gr.Slider(0.1, 1.0, value=0.7, label="Generation Temperature", info="1.0 more diverse, 0.1 more conservative") |
|
waveform_temp = gr.Slider(0.1, 1.0, value=0.7, label="Waveform temperature", info="1.0 more diverse, 0.1 more conservative") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
quick_gen_checkbox = gr.Checkbox(label="是否要快速合成语音", value=True) |
|
settings_checkboxes = ["Use last generation as history", "Save generation as Voice"] |
|
complete_settings = gr.CheckboxGroup(choices=settings_checkboxes, value=settings_checkboxes, label="Detailed Generation Settings", type="value", interactive=True, visible=False) |
|
with gr.Column(): |
|
eos_prob = gr.Slider(0.0, 0.5, value=0.05, label="End of sentence probability") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
tts_create_button = gr.Button("开始声音真实复刻吧") |
|
with gr.Column(): |
|
hidden_checkbox = gr.Checkbox(visible=False) |
|
button_stop_generation = gr.Button("停止生成") |
|
with gr.Row(): |
|
output_audio = gr.Audio(label="真实复刻的声音") |
|
|
|
with gr.Row(): |
|
inp1 = gr.Audio(label="请上传您喜欢的声音") |
|
inp2 = output_audio |
|
inp3 = output_audio |
|
btn = gr.Button("开始生成专属声音吧") |
|
out1 = gr.Audio(label="为您生成的专属声音", type="filepath") |
|
btn.click(voice_conversion, [inp1, inp2, inp3], [out1]) |
|
|
|
with gr.Row(): |
|
inp4 = out1 |
|
btn2 = gr.Button("对专属声音降噪吧") |
|
out2 = gr.Audio(label="降噪后的专属声音", type="filepath") |
|
btn2.click(speechbrain, [inp4], [out2]) |
|
|
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
examples = [ |
|
"Special meanings: [laughter] [laughs] [sighs] [music] [gasps] [clears throat] MAN: WOMAN:", |
|
"♪ Never gonna make you cry, never gonna say goodbye, never gonna tell a lie and hurt you ♪", |
|
"And now — a picture of a larch [laughter]", |
|
""" |
|
WOMAN: I would like an oatmilk latte please. |
|
MAN: Wow, that's expensive! |
|
""", |
|
"""<?xml version="1.0"?> |
|
<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis" |
|
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" |
|
xsi:schemaLocation="http://www.w3.org/2001/10/synthesis |
|
http://www.w3.org/TR/speech-synthesis/synthesis.xsd" |
|
xml:lang="en-US"> |
|
<voice name="en_speaker_9">Look at that drunk guy!</voice> |
|
<voice name="en_speaker_3">Who is he?</voice> |
|
<voice name="en_speaker_9">WOMAN: [clears throat] 10 years ago, he proposed me and I rejected him.</voice> |
|
<voice name="en_speaker_3">Oh my God [laughs] he is still celebrating</voice> |
|
</speak>""" |
|
] |
|
examples = gr.Examples(examples=examples, inputs=input_text) |
|
|
|
with gr.Tab("🤖 - 设置"): |
|
with gr.Row(): |
|
themes = gr.Dropdown(available_themes, label="Theme", info="Change needs complete restart", value=settings.selected_theme) |
|
with gr.Row(): |
|
input_server_name = gr.Textbox(label="Server Name", lines=1, info="Leave blank to run locally", value=settings.server_name) |
|
input_server_port = gr.Number(label="Server Port", precision=0, info="Leave at 0 to use default", value=settings.server_port) |
|
share_checkbox = gr.Checkbox(label="Public Server", value=settings.server_share) |
|
with gr.Row(): |
|
input_desired_len = gr.Slider(100, 150, value=settings.input_text_desired_length, label="Desired Input Text Length", info="Ideal length to split input sentences") |
|
input_max_len = gr.Slider(150, 256, value=settings.input_text_max_length, label="Max Input Text Length", info="Maximum Input Text Length") |
|
with gr.Row(): |
|
input_silence_break = gr.Slider(1, 1000, value=settings.silence_sentence, label="Sentence Pause Time (ms)", info="Silence between sentences in milliseconds") |
|
input_silence_speakers = gr.Slider(1, 5000, value=settings.silence_speakers, label="Speaker Pause Time (ms)", info="Silence between different speakers in milliseconds") |
|
|
|
with gr.Row(): |
|
button_apply_settings = gr.Button("Apply Settings") |
|
button_apply_restart = gr.Button("Restart Server") |
|
button_delete_files = gr.Button("Clear output folder") |
|
|
|
gr.HTML(''' |
|
<div class="footer"> |
|
<p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘 |
|
</p> |
|
</div> |
|
''') |
|
|
|
quick_gen_checkbox.change(fn=on_quick_gen_changed, inputs=quick_gen_checkbox, outputs=complete_settings) |
|
convert_to_ssml_button.click(convert_text_to_ssml, inputs=[input_text, speaker],outputs=input_text) |
|
gen_click = tts_create_button.click(generate_text_to_speech, inputs=[input_text, speaker, text_temp, waveform_temp, eos_prob, quick_gen_checkbox, complete_settings, seedcomponent, batchcount],outputs=output_audio) |
|
button_stop_generation.click(fn=None, inputs=None, outputs=None, cancels=[gen_click]) |
|
|
|
js = "(x) => confirm('Are you sure? This will remove all files from output folder')" |
|
button_delete_files.click(None, None, hidden_checkbox, _js=js) |
|
hidden_checkbox.change(delete_output_files, [hidden_checkbox], [hidden_checkbox]) |
|
button_apply_settings.click(apply_settings, inputs=[themes, input_server_name, input_server_port, share_checkbox, input_desired_len, input_max_len, input_silence_break, input_silence_speakers]) |
|
button_apply_restart.click(restart) |
|
restart_server = False |
|
try: |
|
barkgui.queue().launch(show_error=True) |
|
except: |
|
restart_server = True |
|
run_server = False |
|
try: |
|
while restart_server == False: |
|
time.sleep(1.0) |
|
except (KeyboardInterrupt, OSError): |
|
print("Keyboard interruption in main thread... closing server.") |
|
run_server = False |
|
barkgui.close() |