File size: 32,826 Bytes
6af2279 8a88b9f 6af2279 52f3cb0 6af2279 8a88b9f 6af2279 2ff7b06 6af2279 52f3cb0 6af2279 8a88b9f 6af2279 8a88b9f 6af2279 8a88b9f 6af2279 8a88b9f 6af2279 8a88b9f 6af2279 8a88b9f 6af2279 8a88b9f 6af2279 57e5659 52f3cb0 57e5659 52f3cb0 57e5659 52f3cb0 6af2279 52f3cb0 6af2279 8a88b9f 6af2279 8a88b9f 6af2279 52f3cb0 6af2279 52f3cb0 6af2279 52f3cb0 6af2279 52f3cb0 6af2279 52f3cb0 6af2279 52f3cb0 6af2279 52f3cb0 6af2279 52f3cb0 57e5659 6af2279 52f3cb0 1ab01f2 52f3cb0 6af2279 52f3cb0 6af2279 52f3cb0 6af2279 52f3cb0 6af2279 8a88b9f 6af2279 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 |
import os
import sys
os.system("git clone https://github.com/C0untFloyd/bark-gui.git")
sys.path.append("./bark-gui/")
from cProfile import label
from distutils.command.check import check
from doctest import Example
import dataclasses
import gradio as gr
import numpy as np
import logging
import torch
import pytorch_seed
import time
import torchaudio
from speechbrain.pretrained import SpectralMaskEnhancement
enhance_model = SpectralMaskEnhancement.from_hparams(
source="speechbrain/metricgan-plus-voicebank",
savedir="pretrained_models/metricgan-plus-voicebank",
run_opts={"device":"cuda"},
)
from xml.sax import saxutils
from bark.api import generate_with_settings
from bark.api import save_as_prompt
from settings import Settings
#import nltk
from bark import SAMPLE_RATE
from bark.clonevoice import clone_voice
from bark.generation import SAMPLE_RATE, preload_models, _load_history_prompt, codec_decode
from scipy.io.wavfile import write as write_wav
from parseinput import split_and_recombine_text, build_ssml, is_ssml, create_clips_from_ssml
from datetime import datetime
from tqdm.auto import tqdm
from id3tagging import add_id3_tag
import shutil
import string
import argparse
import json
import gc, copy
from datetime import datetime
from huggingface_hub import hf_hub_download
from pynvml import *
nvmlInit()
gpu_h = nvmlDeviceGetHandleByIndex(0)
ctx_limit = 1536
title = "RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192"
os.environ["RWKV_JIT_ON"] = '1'
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
from rwkv.model import RWKV
model_path1 = hf_hub_download(repo_id="BlinkDL/rwkv-4-raven", filename=f"{title}.pth")
model1 = RWKV(model=model_path1, strategy='cuda fp16i8 *8 -> cuda fp16')
from rwkv.utils import PIPELINE, PIPELINE_ARGS
pipeline = PIPELINE(model1, "20B_tokenizer.json")
def generate_prompt(instruction, input=None):
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
# Instruction:
{instruction}
# Input:
{input}
# Response:
"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
# Instruction:
{instruction}
# Response:
"""
def evaluate(
instruction,
input=None,
token_count=200,
temperature=1.0,
top_p=0.7,
presencePenalty = 0.1,
countPenalty = 0.1,
):
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
alpha_frequency = countPenalty,
alpha_presence = presencePenalty,
token_ban = [], # ban the generation of some tokens
token_stop = [0]) # stop generation whenever you see any token here
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
ctx = generate_prompt(instruction, input)
all_tokens = []
out_last = 0
out_str = ''
occurrence = {}
state = None
for i in range(int(token_count)):
out, state = model1.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
for n in occurrence:
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
if token in args.token_stop:
break
all_tokens += [token]
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
tmp = pipeline.decode(all_tokens[out_last:])
if '\ufffd' not in tmp:
out_str += tmp
yield out_str.strip()
out_last = i + 1
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
del out
del state
gc.collect()
torch.cuda.empty_cache()
yield out_str.strip()
examples = [
["Tell me about ravens.", "", 300, 1.2, 0.5, 0.4, 0.4],
["Write a python function to mine 1 BTC, with details and comments.", "", 300, 1.2, 0.5, 0.4, 0.4],
["Write a song about ravens.", "", 300, 1.2, 0.5, 0.4, 0.4],
["Explain the following metaphor: Life is like cats.", "", 300, 1.2, 0.5, 0.4, 0.4],
["Write a story using the following information", "A man named Alex chops a tree down", 300, 1.2, 0.5, 0.4, 0.4],
["Generate a list of adjectives that describe a person as brave.", "", 300, 1.2, 0.5, 0.4, 0.4],
["You have $100, and your goal is to turn that into as much money as possible with AI and Machine Learning. Please respond with detailed plan.", "", 300, 1.2, 0.5, 0.4, 0.4],
]
##########################################################################
chat_intro = '''The following is a coherent verbose detailed conversation between <|user|> and an AI girl named <|bot|>.
<|user|>: Hi <|bot|>, Would you like to chat with me for a while?
<|bot|>: Hi <|user|>. Sure. What would you like to talk about? I'm listening.
'''
def user(message, chatbot):
chatbot = chatbot or []
# print(f"User: {message}")
return "", chatbot + [[message, None]]
def alternative(chatbot, history):
if not chatbot or not history:
return chatbot, history
chatbot[-1][1] = None
history[0] = copy.deepcopy(history[1])
return chatbot, history
def chat(
prompt,
user,
bot,
chatbot,
history,
temperature=1.0,
top_p=0.8,
presence_penalty=0.1,
count_penalty=0.1,
):
args = PIPELINE_ARGS(temperature=max(0.2, float(temperature)), top_p=float(top_p),
alpha_frequency=float(count_penalty),
alpha_presence=float(presence_penalty),
token_ban=[], # ban the generation of some tokens
token_stop=[]) # stop generation whenever you see any token here
if not chatbot:
return chatbot, history
message = chatbot[-1][0]
message = message.strip().replace('\r\n','\n').replace('\n\n','\n')
ctx = f"{user}: {message}\n\n{bot}:"
if not history:
prompt = prompt.replace("<|user|>", user.strip())
prompt = prompt.replace("<|bot|>", bot.strip())
prompt = prompt.strip()
prompt = f"\n{prompt}\n\n"
out, state = model1.forward(pipeline.encode(prompt), None)
history = [state, None, []] # [state, state_pre, tokens]
# print("History reloaded.")
[state, _, all_tokens] = history
state_pre_0 = copy.deepcopy(state)
out, state = model1.forward(pipeline.encode(ctx)[-ctx_limit:], state)
state_pre_1 = copy.deepcopy(state) # For recovery
# print("Bot:", end='')
begin = len(all_tokens)
out_last = begin
out_str: str = ''
occurrence = {}
for i in range(300):
if i <= 0:
nl_bias = -float('inf')
elif i <= 30:
nl_bias = (i - 30) * 0.1
elif i <= 130:
nl_bias = 0
else:
nl_bias = (i - 130) * 0.25
out[187] += nl_bias
for n in occurrence:
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
next_tokens = [token]
if token == 0:
next_tokens = pipeline.encode('\n\n')
all_tokens += next_tokens
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
out, state = model1.forward(next_tokens, state)
tmp = pipeline.decode(all_tokens[out_last:])
if '\ufffd' not in tmp:
# print(tmp, end='', flush=True)
out_last = begin + i + 1
out_str += tmp
chatbot[-1][1] = out_str.strip()
history = [state, all_tokens]
yield chatbot, history
out_str = pipeline.decode(all_tokens[begin:])
out_str = out_str.replace("\r\n", '\n').replace('\\n', '\n')
if '\n\n' in out_str:
break
# State recovery
if f'{user}:' in out_str or f'{bot}:' in out_str:
idx_user = out_str.find(f'{user}:')
idx_user = len(out_str) if idx_user == -1 else idx_user
idx_bot = out_str.find(f'{bot}:')
idx_bot = len(out_str) if idx_bot == -1 else idx_bot
idx = min(idx_user, idx_bot)
if idx < len(out_str):
out_str = f" {out_str[:idx].strip()}\n\n"
tokens = pipeline.encode(out_str)
all_tokens = all_tokens[:begin] + tokens
out, state = model1.forward(tokens, state_pre_1)
break
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
gc.collect()
torch.cuda.empty_cache()
chatbot[-1][1] = out_str.strip()
history = [state, state_pre_0, all_tokens]
yield chatbot, history
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
try:
from TTS.utils.audio import AudioProcessor
except:
from TTS.utils.audio import AudioProcessor
from TTS.tts.models import setup_model
from TTS.config import load_config
from TTS.tts.models.vits import *
from TTS.tts.utils.speakers import SpeakerManager
from pydub import AudioSegment
# from google.colab import files
import librosa
from scipy.io.wavfile import write, read
import subprocess
OUTPUTFOLDER = "Outputs"
def speechbrain(aud):
# Load and add fake batch dimension
noisy = enhance_model.load_audio(
aud
).unsqueeze(0)
enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.]))
torchaudio.save('enhanced.wav', enhanced.cpu(), 16000)
return 'enhanced.wav'
def generate_text_to_speech(text, selected_speaker, text_temp, waveform_temp, eos_prob, quick_generation, complete_settings, seed, batchcount, progress=gr.Progress(track_tqdm=True)):
# Chunk the text into smaller pieces then combine the generated audio
# generation settings
if selected_speaker == 'None':
selected_speaker = None
voice_name = selected_speaker
if text == None or len(text) < 1:
if selected_speaker == None:
raise gr.Error('No text entered!')
# Extract audio data from speaker if no text and speaker selected
voicedata = _load_history_prompt(voice_name)
audio_arr = codec_decode(voicedata["fine_prompt"])
result = create_filename(OUTPUTFOLDER, "None", "extract",".wav")
save_wav(audio_arr, result)
return result
if batchcount < 1:
batchcount = 1
silenceshort = np.zeros(int((float(settings.silence_sentence) / 1000.0) * SAMPLE_RATE), dtype=np.int16) # quarter second of silence
silencelong = np.zeros(int((float(settings.silence_speakers) / 1000.0) * SAMPLE_RATE), dtype=np.float32) # half a second of silence
use_last_generation_as_history = "Use last generation as history" in complete_settings
save_last_generation = "Save generation as Voice" in complete_settings
for l in range(batchcount):
currentseed = seed
if seed != None and seed > 2**32 - 1:
logger.warning(f"Seed {seed} > 2**32 - 1 (max), setting to random")
currentseed = None
if currentseed == None or currentseed <= 0:
currentseed = np.random.default_rng().integers(1, 2**32 - 1)
assert(0 < currentseed and currentseed < 2**32)
progress(0, desc="Generating")
full_generation = None
all_parts = []
complete_text = ""
text = text.lstrip()
if is_ssml(text):
list_speak = create_clips_from_ssml(text)
prev_speaker = None
for i, clip in tqdm(enumerate(list_speak), total=len(list_speak)):
selected_speaker = clip[0]
# Add pause break between speakers
if i > 0 and selected_speaker != prev_speaker:
all_parts += [silencelong.copy()]
prev_speaker = selected_speaker
text = clip[1]
text = saxutils.unescape(text)
if selected_speaker == "None":
selected_speaker = None
print(f"\nGenerating Text ({i+1}/{len(list_speak)}) -> {selected_speaker} (Seed {currentseed}):`{text}`")
complete_text += text
with pytorch_seed.SavedRNG(currentseed):
audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob)
currentseed = torch.random.initial_seed()
if len(list_speak) > 1:
filename = create_filename(OUTPUTFOLDER, currentseed, "audioclip",".wav")
save_wav(audio_array, filename)
add_id3_tag(filename, text, selected_speaker, currentseed)
all_parts += [audio_array]
else:
texts = split_and_recombine_text(text, settings.input_text_desired_length, settings.input_text_max_length)
for i, text in tqdm(enumerate(texts), total=len(texts)):
print(f"\nGenerating Text ({i+1}/{len(texts)}) -> {selected_speaker} (Seed {currentseed}):`{text}`")
complete_text += text
if quick_generation == True:
with pytorch_seed.SavedRNG(currentseed):
audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob)
currentseed = torch.random.initial_seed()
else:
full_output = use_last_generation_as_history or save_last_generation
if full_output:
full_generation, audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob, output_full=True)
else:
audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob)
# Noticed this in the HF Demo - convert to 16bit int -32767/32767 - most used audio format
# audio_array = (audio_array * 32767).astype(np.int16)
if len(texts) > 1:
filename = create_filename(OUTPUTFOLDER, currentseed, "audioclip",".wav")
save_wav(audio_array, filename)
add_id3_tag(filename, text, selected_speaker, currentseed)
if quick_generation == False and (save_last_generation == True or use_last_generation_as_history == True):
# save to npz
voice_name = create_filename(OUTPUTFOLDER, seed, "audioclip", ".npz")
save_as_prompt(voice_name, full_generation)
if use_last_generation_as_history:
selected_speaker = voice_name
all_parts += [audio_array]
# Add short pause between sentences
if text[-1] in "!?.\n" and i > 1:
all_parts += [silenceshort.copy()]
# save & play audio
result = create_filename(OUTPUTFOLDER, currentseed, "final",".wav")
save_wav(np.concatenate(all_parts), result)
# write id3 tag with text truncated to 60 chars, as a precaution...
add_id3_tag(result, complete_text, selected_speaker, currentseed)
return result
def create_filename(path, seed, name, extension):
now = datetime.now()
date_str =now.strftime("%m-%d-%Y")
outputs_folder = os.path.join(os.getcwd(), path)
if not os.path.exists(outputs_folder):
os.makedirs(outputs_folder)
sub_folder = os.path.join(outputs_folder, date_str)
if not os.path.exists(sub_folder):
os.makedirs(sub_folder)
time_str = now.strftime("%H-%M-%S")
file_name = f"{name}_{time_str}_s{seed}{extension}"
return os.path.join(sub_folder, file_name)
def save_wav(audio_array, filename):
write_wav(filename, SAMPLE_RATE, audio_array)
def save_voice(filename, semantic_prompt, coarse_prompt, fine_prompt):
np.savez_compressed(
filename,
semantic_prompt=semantic_prompt,
coarse_prompt=coarse_prompt,
fine_prompt=fine_prompt
)
def on_quick_gen_changed(checkbox):
if checkbox == False:
return gr.CheckboxGroup.update(visible=True)
return gr.CheckboxGroup.update(visible=False)
def delete_output_files(checkbox_state):
if checkbox_state:
outputs_folder = os.path.join(os.getcwd(), OUTPUTFOLDER)
if os.path.exists(outputs_folder):
purgedir(outputs_folder)
return False
# https://stackoverflow.com/a/54494779
def purgedir(parent):
for root, dirs, files in os.walk(parent):
for item in files:
# Delete subordinate files
filespec = os.path.join(root, item)
os.unlink(filespec)
for item in dirs:
# Recursively perform this operation for subordinate directories
purgedir(os.path.join(root, item))
def convert_text_to_ssml(text, selected_speaker):
return build_ssml(text, selected_speaker)
def apply_settings(themes, input_server_name, input_server_port, input_server_public, input_desired_len, input_max_len, input_silence_break, input_silence_speaker):
settings.selected_theme = themes
settings.server_name = input_server_name
settings.server_port = input_server_port
settings.server_share = input_server_public
settings.input_text_desired_length = input_desired_len
settings.input_text_max_length = input_max_len
settings.silence_sentence = input_silence_break
settings.silence_speaker = input_silence_speaker
settings.save()
def restart():
global restart_server
restart_server = True
def create_version_html():
python_version = ".".join([str(x) for x in sys.version_info[0:3]])
versions_html = f"""
python: <span title="{sys.version}">{python_version}</span>
•
torch: {getattr(torch, '__long_version__',torch.__version__)}
•
gradio: {gr.__version__}
"""
return versions_html
logger = logging.getLogger(__name__)
APPTITLE = "Bark UI Enhanced v0.4.8"
autolaunch = False
if len(sys.argv) > 1:
autolaunch = "-autolaunch" in sys.argv
if torch.cuda.is_available() == False:
os.environ['BARK_FORCE_CPU'] = 'True'
logger.warning("No CUDA detected, fallback to CPU!")
print(f'smallmodels={os.environ.get("SUNO_USE_SMALL_MODELS", False)}')
print(f'enablemps={os.environ.get("SUNO_ENABLE_MPS", False)}')
print(f'offloadcpu={os.environ.get("SUNO_OFFLOAD_CPU", False)}')
print(f'forcecpu={os.environ.get("BARK_FORCE_CPU", False)}')
print(f'autolaunch={autolaunch}\n\n')
#print("Updating nltk\n")
#nltk.download('punkt')
print("Preloading Models\n")
preload_models()
settings = Settings('config.yaml')
# Collect all existing speakers/voices in dir
speakers_list = []
for root, dirs, files in os.walk("./bark/assets/prompts"):
for file in files:
if(file.endswith(".npz")):
pathpart = root.replace("./bark/assets/prompts", "")
name = os.path.join(pathpart, file[:-4])
if name.startswith("/") or name.startswith("\\"):
name = name[1:]
speakers_list.append(name)
speakers_list = sorted(speakers_list, key=lambda x: x.lower())
speakers_list.insert(0, 'None')
available_themes = ["Default", "gradio/glass", "gradio/monochrome", "gradio/seafoam", "gradio/soft", "gstaff/xkcd", "freddyaboulton/dracula_revamped", "ysharma/steampunk"]
seed = -1
server_name = settings.server_name
if len(server_name) < 1:
server_name = None
server_port = settings.server_port
if server_port <= 0:
server_port = None
global run_server
global restart_server
run_server = True
'''
from google.colab import drive
drive.mount('/content/drive')
src_path = os.path.join(os.path.join(os.path.join(os.path.join(os.getcwd(), 'drive'), 'MyDrive'), 'Colab Notebooks'), 'best_model_latest.pth.tar')
dst_path = os.path.join(os.getcwd(), 'best_model.pth.tar')
shutil.copy(src_path, dst_path)
'''
TTS_PATH = "TTS/"
# add libraries into environment
sys.path.append(TTS_PATH) # set this if TTS is not installed globally
# Paths definition
OUT_PATH = 'out/'
# create output path
os.makedirs(OUT_PATH, exist_ok=True)
# model vars
MODEL_PATH = 'best_model.pth.tar'
CONFIG_PATH = 'config.json'
TTS_LANGUAGES = "language_ids.json"
TTS_SPEAKERS = "speakers.json"
USE_CUDA = torch.cuda.is_available()
# load the config
C = load_config(CONFIG_PATH)
# load the audio processor
ap = AudioProcessor(**C.audio)
speaker_embedding = None
C.model_args['d_vector_file'] = TTS_SPEAKERS
C.model_args['use_speaker_encoder_as_loss'] = False
model = setup_model(C)
model.language_manager.set_language_ids_from_file(TTS_LANGUAGES)
# print(model.language_manager.num_languages, model.embedded_language_dim)
# print(model.emb_l)
cp = torch.load(MODEL_PATH, map_location=torch.device('cpu'))
# remove speaker encoder
model_weights = cp['model'].copy()
for key in list(model_weights.keys()):
if "speaker_encoder" in key:
del model_weights[key]
model.load_state_dict(model_weights)
model.eval()
if USE_CUDA:
model = model.cuda()
# synthesize voice
use_griffin_lim = False
# Paths definition
CONFIG_SE_PATH = "config_se.json"
CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar"
# Load the Speaker encoder
SE_speaker_manager = SpeakerManager(encoder_model_path=CHECKPOINT_SE_PATH, encoder_config_path=CONFIG_SE_PATH, use_cuda=USE_CUDA)
# Define helper function
def compute_spec(ref_file):
y, sr = librosa.load(ref_file, sr=ap.sample_rate)
spec = ap.spectrogram(y)
spec = torch.FloatTensor(spec).unsqueeze(0)
return spec
def voice_conversion(ta, ra, da):
target_audio = 'target.wav'
reference_audio = 'reference.wav'
driving_audio = 'driving.wav'
write(target_audio, ta[0], ta[1])
write(reference_audio, ra[0], ra[1])
write(driving_audio, da[0], da[1])
# !ffmpeg-normalize $target_audio -nt rms -t=-27 -o $target_audio -ar 16000 -f
# !ffmpeg-normalize $reference_audio -nt rms -t=-27 -o $reference_audio -ar 16000 -f
# !ffmpeg-normalize $driving_audio -nt rms -t=-27 -o $driving_audio -ar 16000 -f
files = [target_audio, reference_audio, driving_audio]
for file in files:
subprocess.run(["ffmpeg-normalize", file, "-nt", "rms", "-t=-27", "-o", file, "-ar", "16000", "-f"])
# ta_ = read(target_audio)
target_emb = SE_speaker_manager.compute_d_vector_from_clip([target_audio])
target_emb = torch.FloatTensor(target_emb).unsqueeze(0)
driving_emb = SE_speaker_manager.compute_d_vector_from_clip([reference_audio])
driving_emb = torch.FloatTensor(driving_emb).unsqueeze(0)
# Convert the voice
driving_spec = compute_spec(driving_audio)
y_lengths = torch.tensor([driving_spec.size(-1)])
if USE_CUDA:
ref_wav_voc, _, _ = model.voice_conversion(driving_spec.cuda(), y_lengths.cuda(), driving_emb.cuda(), target_emb.cuda())
ref_wav_voc = ref_wav_voc.squeeze().cpu().detach().numpy()
else:
ref_wav_voc, _, _ = model.voice_conversion(driving_spec, y_lengths, driving_emb, target_emb)
ref_wav_voc = ref_wav_voc.squeeze().detach().numpy()
# print("Reference Audio after decoder:")
# IPython.display.display(Audio(ref_wav_voc, rate=ap.sample_rate))
return (ap.sample_rate, ref_wav_voc)
while run_server:
print(f'Launching {APPTITLE} Server')
# Create Gradio Blocks
with gr.Blocks(title=f"{APPTITLE}", mode=f"{APPTITLE}", theme=settings.selected_theme) as barkgui:
gr.Markdown("# <center>🐶🥳🎶 - Bark拟声,开启声音真实复刻的新纪元!</center>")
gr.Markdown("### <center>🦄 - [Bark](https://github.com/suno-ai/bark)拟声,能够实现语音、语调及说话情感的真实复刻</center>")
gr.Markdown(
f"""
### <center>🤗 - Powered by [Bark Enhanced](https://github.com/C0untFloyd/bark-gui). Thanks to C0untFloyd.</center>
### <center>1. 您可以复制该程序并用GPU运行: <a href="https://huggingface.co/spaces/{os.getenv('SPACE_ID')}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></center>
### <center>2. 更多精彩应用,尽在[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center>
"""
)
with gr.Tab("🐶 - Bark拟声"):
with gr.Row():
with gr.Column():
placeholder = "想让Bark说些什么呢?"
input_text = gr.Textbox(label="用作声音合成的文本", lines=4, placeholder=placeholder)
with gr.Column():
convert_to_ssml_button = gr.Button("Convert Input Text to SSML")
seedcomponent = gr.Number(label="Seed (default -1 = Random)", precision=0, value=-1)
batchcount = gr.Number(label="Batch count", precision=0, value=1)
with gr.Row():
with gr.Column():
gr.Markdown("查看Bark官方[语言库](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c)")
speaker = gr.Dropdown(speakers_list, value=speakers_list[0], label="中英双语的不同声音供您选择")
with gr.Column():
text_temp = gr.Slider(0.1, 1.0, value=0.7, label="Generation Temperature", info="1.0 more diverse, 0.1 more conservative")
waveform_temp = gr.Slider(0.1, 1.0, value=0.7, label="Waveform temperature", info="1.0 more diverse, 0.1 more conservative")
with gr.Row():
with gr.Column():
quick_gen_checkbox = gr.Checkbox(label="是否要快速合成语音", value=True)
settings_checkboxes = ["Use last generation as history", "Save generation as Voice"]
complete_settings = gr.CheckboxGroup(choices=settings_checkboxes, value=settings_checkboxes, label="Detailed Generation Settings", type="value", interactive=True, visible=False)
with gr.Column():
eos_prob = gr.Slider(0.0, 0.5, value=0.05, label="End of sentence probability")
with gr.Row():
with gr.Column():
tts_create_button = gr.Button("开始声音真实复刻吧")
with gr.Column():
hidden_checkbox = gr.Checkbox(visible=False)
button_stop_generation = gr.Button("停止生成")
with gr.Row():
output_audio = gr.Audio(label="真实复刻的声音")
with gr.Row():
inp1 = gr.Audio(label="请上传您喜欢的声音")
inp2 = output_audio
inp3 = output_audio
btn = gr.Button("开始生成专属声音吧")
out1 = gr.Audio(label="为您生成的专属声音", type="filepath")
btn.click(voice_conversion, [inp1, inp2, inp3], [out1])
with gr.Row():
inp4 = out1
btn2 = gr.Button("对专属声音降噪吧")
out2 = gr.Audio(label="降噪后的专属声音", type="filepath")
btn2.click(speechbrain, [inp4], [out2])
with gr.Row():
with gr.Column():
examples = [
"Special meanings: [laughter] [laughs] [sighs] [music] [gasps] [clears throat] MAN: WOMAN:",
"♪ Never gonna make you cry, never gonna say goodbye, never gonna tell a lie and hurt you ♪",
"And now — a picture of a larch [laughter]",
"""
WOMAN: I would like an oatmilk latte please.
MAN: Wow, that's expensive!
""",
"""<?xml version="1.0"?>
<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.w3.org/2001/10/synthesis
http://www.w3.org/TR/speech-synthesis/synthesis.xsd"
xml:lang="en-US">
<voice name="en_speaker_9">Look at that drunk guy!</voice>
<voice name="en_speaker_3">Who is he?</voice>
<voice name="en_speaker_9">WOMAN: [clears throat] 10 years ago, he proposed me and I rejected him.</voice>
<voice name="en_speaker_3">Oh my God [laughs] he is still celebrating</voice>
</speak>"""
]
examples = gr.Examples(examples=examples, inputs=input_text)
with gr.Tab("🤖 - 设置"):
with gr.Row():
themes = gr.Dropdown(available_themes, label="Theme", info="Change needs complete restart", value=settings.selected_theme)
with gr.Row():
input_server_name = gr.Textbox(label="Server Name", lines=1, info="Leave blank to run locally", value=settings.server_name)
input_server_port = gr.Number(label="Server Port", precision=0, info="Leave at 0 to use default", value=settings.server_port)
share_checkbox = gr.Checkbox(label="Public Server", value=settings.server_share)
with gr.Row():
input_desired_len = gr.Slider(100, 150, value=settings.input_text_desired_length, label="Desired Input Text Length", info="Ideal length to split input sentences")
input_max_len = gr.Slider(150, 256, value=settings.input_text_max_length, label="Max Input Text Length", info="Maximum Input Text Length")
with gr.Row():
input_silence_break = gr.Slider(1, 1000, value=settings.silence_sentence, label="Sentence Pause Time (ms)", info="Silence between sentences in milliseconds")
input_silence_speakers = gr.Slider(1, 5000, value=settings.silence_speakers, label="Speaker Pause Time (ms)", info="Silence between different speakers in milliseconds")
with gr.Row():
button_apply_settings = gr.Button("Apply Settings")
button_apply_restart = gr.Button("Restart Server")
button_delete_files = gr.Button("Clear output folder")
gr.HTML('''
<div class="footer">
<p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
</p>
</div>
''')
quick_gen_checkbox.change(fn=on_quick_gen_changed, inputs=quick_gen_checkbox, outputs=complete_settings)
convert_to_ssml_button.click(convert_text_to_ssml, inputs=[input_text, speaker],outputs=input_text)
gen_click = tts_create_button.click(generate_text_to_speech, inputs=[input_text, speaker, text_temp, waveform_temp, eos_prob, quick_gen_checkbox, complete_settings, seedcomponent, batchcount],outputs=output_audio)
button_stop_generation.click(fn=None, inputs=None, outputs=None, cancels=[gen_click])
# Javascript hack to display modal confirmation dialog
js = "(x) => confirm('Are you sure? This will remove all files from output folder')"
button_delete_files.click(None, None, hidden_checkbox, _js=js)
hidden_checkbox.change(delete_output_files, [hidden_checkbox], [hidden_checkbox])
button_apply_settings.click(apply_settings, inputs=[themes, input_server_name, input_server_port, share_checkbox, input_desired_len, input_max_len, input_silence_break, input_silence_speakers])
button_apply_restart.click(restart)
restart_server = False
try:
barkgui.queue().launch(show_error=True)
except:
restart_server = True
run_server = False
try:
while restart_server == False:
time.sleep(1.0)
except (KeyboardInterrupt, OSError):
print("Keyboard interruption in main thread... closing server.")
run_server = False
barkgui.close() |