Spaces:
Sleeping
Sleeping
File size: 8,911 Bytes
fb6b415 1ee2db4 9cb4e8f 286516b 470bdb8 286516b c66df08 27e0ec6 286516b 27e0ec6 286516b 470bdb8 286516b 470bdb8 286516b 470bdb8 d050f83 a33de26 d050f83 8099d9b 470bdb8 f87f358 2ee750c f87f358 470bdb8 c2122c6 d996c80 dd2752f 60e788e d996c80 60e788e 38baeb2 dd2752f d996c80 f87f358 d996c80 f87f358 2ee750c d996c80 f87f358 470bdb8 f87f358 95f9443 470bdb8 95f9443 470bdb8 95f9443 470bdb8 f87f358 470bdb8 3885d1d 2577f1f 470bdb8 3885d1d d050f83 3885d1d 470bdb8 3885d1d f32ae2a c2122c6 470bdb8 36ab1a9 286516b 470bdb8 286516b 470bdb8 286516b 470bdb8 286516b 470bdb8 286516b 470bdb8 286516b 333b8cd 286516b 470bdb8 fb6b415 3885d1d 1977bde 470bdb8 c034fa1 470bdb8 1977bde 470bdb8 286516b 470bdb8 3885d1d 286516b 8464276 286516b 7f75ebb 1ee2db4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import spaces
import os
from dotenv import load_dotenv
import re
from urllib.parse import urlparse
import pandas as pd
import unicodedata as uni
import emoji
from langchain_openai import ChatOpenAI
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.document_loaders import DataFrameLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA
import gradio as gr
import logging
import requests
# Load environment variables
load_dotenv()
# Set command line arguments for Gradio
os.environ["COMMANDLINE_ARGS"] = "--no-gradio-queue"
# Configure logging
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[logging.StreamHandler()],
)
logger = logging.getLogger(__name__)
import http.client
http.client.HTTPConnection.debuglevel = 1
req_log = logging.getLogger("requests.packages.urllib3")
req_log.setLevel(logging.DEBUG)
req_log.propagate = True
# Constants
LIMIT = 1000 # Limit to 1000 reviews to avoid long processing times
OpenAIModel = "gpt-3.5-turbo"
shop_id = ""
item_id = ""
item = {}
cache_URL = ""
db = None
qa = None
cache = {}
import json
# Function to request product ID from Tokopedia
def request_product_id(shop_domain, product_key, url):
endpoint = "https://gql.tokopedia.com/graphql/PDPGetLayoutQuery"
payload = {
"operationName": "PDPGetLayoutQuery",
"variables": {
"shopDomain": f"{shop_domain}",
"productKey": f"{product_key}",
"apiVersion": 1,
},
"query": "fragment ProductVariant on pdpDataProductVariant { errorCode parentID defaultChild children { productID } __typename } query PDPGetLayoutQuery($shopDomain: String, $productKey: String, $layoutID: String, $apiVersion: Float, $userLocation: pdpUserLocation, $extParam: String, $tokonow: pdpTokoNow, $deviceID: String) { pdpGetLayout(shopDomain: $shopDomain, productKey: $productKey, layoutID: $layoutID, apiVersion: $apiVersion, userLocation: $userLocation, extParam: $extParam, tokonow: $tokonow, deviceID: $deviceID) { requestID name pdpSession basicInfo { id: productID } components { name type position data { ...ProductVariant __typename } __typename } __typename } }",
}
headers = {
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
"Referer": "https://www.tokopedia.com",
"X-TKPD-AKAMAI": "pdpGetLayout",
}
return requests.request(
method="POST", url=endpoint, json=payload, headers=headers, timeout=30
)
# Function to request product reviews from Tokopedia
def request_product_review(product_id, page=1, limit=20):
ENDPOINT = "https://gql.tokopedia.com/graphql/productReviewList"
payload = {
"operationName": "productReviewList",
"variables": {
"productID": f"{product_id}",
"page": page,
"limit": limit,
"sortBy": "",
"filterBy": "",
},
"query": """query productReviewList($productID: String!, $page: Int!, $limit: Int!, $sortBy: String, $filterBy: String) {
productrevGetProductReviewList(productID: $productID, page: $page, limit: $limit, sortBy: $sortBy, filterBy: $filterBy) {
productID
list {
id: feedbackID
variantName
message
productRating
reviewCreateTime
reviewCreateTimestamp
isReportable
isAnonymous
reviewResponse {
message
createTime
__typename
}
user {
userID
fullName
image
url
__typename
}
likeDislike {
totalLike
likeStatus
__typename
}
stats {
key
formatted
count
__typename
}
badRatingReasonFmt
__typename
}
shop {
shopID
name
url
image
__typename
}
hasNext
totalReviews
__typename
}
}
""",
}
headers = {
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
"Referer": "https://www.tokopedia.com",
"X-TKPD-AKAMAI": "productReviewList",
}
try:
response = requests.post(ENDPOINT, json=payload, headers=headers, timeout=60)
response.raise_for_status()
logger.info(f"Request successful. Status code: {response.status_code}")
return response
except requests.exceptions.RequestException as e:
logger.error(f"Request failed: {e}")
return None
# Function to scrape reviews for a product
def scrape(product_id, max_reviews=LIMIT):
all_reviews = []
page = 1
has_next = True
logger.info("Extracting product reviews...")
while has_next and len(all_reviews) < max_reviews:
response = request_product_review(product_id, page=page)
if not response:
break
data = response.json()["data"]["productrevGetProductReviewList"]
reviews = data["list"]
all_reviews.extend(reviews)
has_next = data["hasNext"]
page += 1
reviews_df = pd.json_normalize(all_reviews)
reviews_df.rename(columns={"message": "comment"}, inplace=True)
reviews_df = reviews_df[["comment"]]
logger.info(reviews_df.head())
return reviews_df
# Function to extract product ID from URL
def get_product_id(URL):
parsed_url = urlparse(URL)
*_, shop, product_key = parsed_url.path.split("/")
response = request_product_id(shop, product_key, URL)
if response:
product_id = response.json()["data"]["pdpGetLayout"]["basicInfo"]["id"]
logger.info(f"Product ID: {product_id}")
return product_id
else:
logger.error("Failed to get product ID")
return None
# Function to clean the reviews DataFrame
def clean(df):
df = df.dropna().copy().reset_index(drop=True) # Drop reviews with empty comments
df = df[df["comment"] != ""].reset_index(drop=True) # Remove empty reviews
df["comment"] = df["comment"].apply(lambda x: clean_text(x)) # Clean text
df = df[df["comment"] != ""].reset_index(drop=True) # Remove empty reviews
logger.info("Cleaned reviews DataFrame")
return df
# Function to clean individual text entries
def clean_text(text):
text = uni.normalize("NFKD", text) # Normalize characters
text = emoji.replace_emoji(text, "") # Remove emoji
text = re.sub(r"(\w)\1{2,}", r"\1", text) # Remove repeated characters
text = re.sub(r"[ ]+", " ", text).strip() # Remove extra spaces
return text
# Initialize LLM and embeddings
llm = ChatOpenAI(model=OpenAIModel, temperature=0.1)
embeddings = HuggingFaceEmbeddings(model_name="LazarusNLP/all-indobert-base-v2")
# Function to generate a summary or answer based on reviews
@spaces.GPU
async def generate(URL, query):
global cache_URL, db, qa, cache
if not URL or not query:
return "Input kosong"
try:
product_id = get_product_id(URL)
if not product_id:
return "Gagal mendapatkan product ID"
if URL not in cache:
reviews = scrape(product_id)
if reviews.empty:
return "Tidak ada ulasan ditemukan"
cleaned_reviews = clean(reviews)
loader = DataFrameLoader(cleaned_reviews, page_content_column="comment")
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, chunk_overlap=50
)
docs = text_splitter.split_documents(documents)
db = FAISS.from_documents(docs, embeddings)
cache[URL] = (docs, db)
else:
docs, db = cache[URL]
qa = RetrievalQA.from_chain_type(llm=llm, retriever=db.as_retriever())
res = await qa.ainvoke(query)
return res["result"]
except Exception as e:
logger.error(f"Error in generating response: {e}")
return "Gagal mendapatkan review dari URL"
# Set up Gradio interface
product_box = gr.Textbox(label="URL Produk", placeholder="URL produk dari Tokopedia")
query_box = gr.Textbox(
lines=2,
label="Kueri",
placeholder="Contoh: Apa yang orang katakan tentang kualitas produknya?, Bagaimana pendapat orang yang kurang puas dengan produknya?",
)
gr.Interface(
fn=generate,
inputs=[product_box, query_box],
outputs=[gr.Textbox(label="Jawaban")],
title="RingkasUlas",
description="Bot percakapan yang bisa meringkas ulasan-ulasan produk di Tokopedia Indonesia (https://tokopedia.com/). Harap bersabar, bot ini dapat memakan waktu agak lama saat mengambil ulasan dari Tokopedia dan menyiapkan jawabannya.",
allow_flagging="never",
).launch(debug=True)
|