Spaces:
Sleeping
Sleeping
clean up
Browse files
app.py
CHANGED
@@ -1,12 +1,8 @@
|
|
1 |
import spaces
|
2 |
import os
|
3 |
-
os.environ["COMMANDLINE_ARGS"] = "--no-gradio-queue"
|
4 |
-
|
5 |
from dotenv import load_dotenv
|
6 |
-
load_dotenv()
|
7 |
-
|
8 |
import re
|
9 |
-
from urllib.parse import urlparse
|
10 |
import pandas as pd
|
11 |
import unicodedata as uni
|
12 |
import emoji
|
@@ -16,15 +12,15 @@ from langchain_community.document_loaders import DataFrameLoader
|
|
16 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
17 |
from langchain_community.vectorstores import FAISS
|
18 |
from langchain.chains import RetrievalQA
|
19 |
-
# from tokopedia import request_product_id, request_product_review
|
20 |
import gradio as gr
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
item = {}
|
25 |
-
LIMIT = 1000 # Limit to 1000 reviews so that processing does not take too long
|
26 |
|
27 |
-
|
|
|
28 |
|
29 |
# Configure logging
|
30 |
logging.basicConfig(
|
@@ -32,13 +28,21 @@ logging.basicConfig(
|
|
32 |
format="%(asctime)s [%(levelname)s] %(message)s",
|
33 |
handlers=[logging.StreamHandler()],
|
34 |
)
|
35 |
-
|
36 |
logger = logging.getLogger(__name__)
|
37 |
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
|
|
|
42 |
def request_product_id(shop_domain, product_key):
|
43 |
ENDPOINT = "https://gql.tokopedia.com/graphql/PDPGetLayoutQuery"
|
44 |
payload = {
|
@@ -81,30 +85,22 @@ def request_product_id(shop_domain, product_key):
|
|
81 |
}
|
82 |
""",
|
83 |
}
|
84 |
-
|
85 |
headers = {
|
86 |
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
|
87 |
"Referer": "https://www.tokopedia.com",
|
88 |
"X-TKPD-AKAMAI": "pdpGetLayout",
|
89 |
}
|
90 |
-
|
91 |
try:
|
92 |
-
response = requests.
|
93 |
-
|
94 |
-
url=ENDPOINT,
|
95 |
-
json=payload,
|
96 |
-
headers=headers,
|
97 |
-
timeout=60
|
98 |
-
)
|
99 |
-
response.raise_for_status() # Raise an exception for non-2xx status codes
|
100 |
logger.info(f"Request successful. Status code: {response.status_code}")
|
101 |
-
|
102 |
except requests.exceptions.RequestException as e:
|
103 |
logger.error(f"Request failed: {e}")
|
104 |
-
|
105 |
-
return response
|
106 |
|
107 |
|
|
|
108 |
def request_product_review(product_id, page=1, limit=20):
|
109 |
ENDPOINT = "https://gql.tokopedia.com/graphql/productReviewList"
|
110 |
payload = {
|
@@ -168,40 +164,36 @@ def request_product_review(product_id, page=1, limit=20):
|
|
168 |
}
|
169 |
""",
|
170 |
}
|
171 |
-
|
172 |
headers = {
|
173 |
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
|
174 |
"Referer": "https://www.tokopedia.com",
|
175 |
"X-TKPD-AKAMAI": "productReviewList",
|
176 |
}
|
177 |
-
|
178 |
try:
|
179 |
-
response = requests.
|
180 |
-
|
181 |
-
)
|
182 |
-
response.raise_for_status() # Raise an exception for non-2xx status codes
|
183 |
logger.info(f"Request successful. Status code: {response.status_code}")
|
184 |
-
|
185 |
except requests.exceptions.RequestException as e:
|
186 |
logger.error(f"Request failed: {e}")
|
187 |
-
|
188 |
-
return response
|
189 |
|
190 |
|
|
|
191 |
def scrape(product_id, max_reviews=LIMIT):
|
192 |
all_reviews = []
|
193 |
page = 1
|
194 |
has_next = True
|
195 |
-
|
196 |
logger.info("Extracting product reviews...")
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
|
|
205 |
reviews_df = pd.json_normalize(all_reviews)
|
206 |
reviews_df.rename(columns={"message": "comment"}, inplace=True)
|
207 |
reviews_df = reviews_df[["comment"]]
|
@@ -209,97 +201,82 @@ def scrape(product_id, max_reviews=LIMIT):
|
|
209 |
return reviews_df
|
210 |
|
211 |
|
|
|
212 |
def get_product_id(URL):
|
213 |
parsed_url = urlparse(URL)
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
220 |
|
221 |
|
222 |
-
#
|
223 |
def clean(df):
|
224 |
-
df = df.dropna().copy().reset_index(drop=True) #
|
225 |
-
df = df[df["comment"] != ""].reset_index(drop=True) #
|
226 |
-
df["comment"] = df["comment"].apply(lambda x: clean_text(x)) #
|
227 |
-
df = df[df["comment"] != ""].reset_index(drop=True) #
|
228 |
-
logger.info("
|
229 |
return df
|
230 |
|
231 |
|
|
|
232 |
def clean_text(text):
|
233 |
-
text = uni.normalize("NFKD", text) #
|
234 |
-
text = emoji.replace_emoji(text, "") #
|
235 |
-
text = re.sub(r"(\w)\1{2,}", r"\1", text) # repeated
|
236 |
-
text = re.sub(r"[ ]+", " ", text).strip() #
|
237 |
return text
|
238 |
|
239 |
|
240 |
-
# LLM
|
241 |
-
OpenAIModel = "gpt-3.5-turbo"
|
242 |
llm = ChatOpenAI(model=OpenAIModel, temperature=0.1)
|
243 |
-
|
244 |
-
# Embeddings
|
245 |
embeddings = HuggingFaceEmbeddings(model_name="LazarusNLP/all-indobert-base-v2")
|
246 |
|
247 |
-
cache_URL = ""
|
248 |
-
db = None
|
249 |
-
qa = None
|
250 |
-
cache = {}
|
251 |
-
|
252 |
|
|
|
253 |
@spaces.GPU
|
254 |
async def generate(URL, query):
|
255 |
global cache_URL, db, qa, cache
|
256 |
|
257 |
-
if URL
|
258 |
return "Input kosong"
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
chunk_size=1000, chunk_overlap=50
|
280 |
-
)
|
281 |
-
docs = text_splitter.split_documents(documents)
|
282 |
-
|
283 |
-
# Vector store
|
284 |
-
db = FAISS.from_documents(docs, embeddings)
|
285 |
-
|
286 |
-
# Store in cache
|
287 |
-
cache[URL] = (docs, db)
|
288 |
-
|
289 |
-
# Retrieve from cache
|
290 |
docs, db = cache[URL]
|
291 |
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
except:
|
299 |
-
return "Gagal mendapatkan review dari URL"
|
300 |
|
301 |
|
302 |
-
# Gradio
|
303 |
product_box = gr.Textbox(label="URL Produk", placeholder="URL produk dari Tokopedia")
|
304 |
query_box = gr.Textbox(
|
305 |
lines=2,
|
|
|
1 |
import spaces
|
2 |
import os
|
|
|
|
|
3 |
from dotenv import load_dotenv
|
|
|
|
|
4 |
import re
|
5 |
+
from urllib.parse import urlparse
|
6 |
import pandas as pd
|
7 |
import unicodedata as uni
|
8 |
import emoji
|
|
|
12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
from langchain_community.vectorstores import FAISS
|
14 |
from langchain.chains import RetrievalQA
|
|
|
15 |
import gradio as gr
|
16 |
+
import logging
|
17 |
+
import requests
|
18 |
|
19 |
+
# Load environment variables
|
20 |
+
load_dotenv()
|
|
|
|
|
21 |
|
22 |
+
# Set command line arguments for Gradio
|
23 |
+
os.environ["COMMANDLINE_ARGS"] = "--no-gradio-queue"
|
24 |
|
25 |
# Configure logging
|
26 |
logging.basicConfig(
|
|
|
28 |
format="%(asctime)s [%(levelname)s] %(message)s",
|
29 |
handlers=[logging.StreamHandler()],
|
30 |
)
|
|
|
31 |
logger = logging.getLogger(__name__)
|
32 |
|
33 |
+
# Constants
|
34 |
+
LIMIT = 1000 # Limit to 1000 reviews to avoid long processing times
|
35 |
+
OpenAIModel = "gpt-3.5-turbo"
|
36 |
+
shop_id = ""
|
37 |
+
item_id = ""
|
38 |
+
item = {}
|
39 |
+
cache_URL = ""
|
40 |
+
db = None
|
41 |
+
qa = None
|
42 |
+
cache = {}
|
43 |
|
44 |
|
45 |
+
# Function to request product ID from Tokopedia
|
46 |
def request_product_id(shop_domain, product_key):
|
47 |
ENDPOINT = "https://gql.tokopedia.com/graphql/PDPGetLayoutQuery"
|
48 |
payload = {
|
|
|
85 |
}
|
86 |
""",
|
87 |
}
|
|
|
88 |
headers = {
|
89 |
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
|
90 |
"Referer": "https://www.tokopedia.com",
|
91 |
"X-TKPD-AKAMAI": "pdpGetLayout",
|
92 |
}
|
|
|
93 |
try:
|
94 |
+
response = requests.post(ENDPOINT, json=payload, headers=headers, timeout=60)
|
95 |
+
response.raise_for_status()
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
logger.info(f"Request successful. Status code: {response.status_code}")
|
97 |
+
return response
|
98 |
except requests.exceptions.RequestException as e:
|
99 |
logger.error(f"Request failed: {e}")
|
100 |
+
return None
|
|
|
101 |
|
102 |
|
103 |
+
# Function to request product reviews from Tokopedia
|
104 |
def request_product_review(product_id, page=1, limit=20):
|
105 |
ENDPOINT = "https://gql.tokopedia.com/graphql/productReviewList"
|
106 |
payload = {
|
|
|
164 |
}
|
165 |
""",
|
166 |
}
|
|
|
167 |
headers = {
|
168 |
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
|
169 |
"Referer": "https://www.tokopedia.com",
|
170 |
"X-TKPD-AKAMAI": "productReviewList",
|
171 |
}
|
|
|
172 |
try:
|
173 |
+
response = requests.post(ENDPOINT, json=payload, headers=headers, timeout=60)
|
174 |
+
response.raise_for_status()
|
|
|
|
|
175 |
logger.info(f"Request successful. Status code: {response.status_code}")
|
176 |
+
return response
|
177 |
except requests.exceptions.RequestException as e:
|
178 |
logger.error(f"Request failed: {e}")
|
179 |
+
return None
|
|
|
180 |
|
181 |
|
182 |
+
# Function to scrape reviews for a product
|
183 |
def scrape(product_id, max_reviews=LIMIT):
|
184 |
all_reviews = []
|
185 |
page = 1
|
186 |
has_next = True
|
|
|
187 |
logger.info("Extracting product reviews...")
|
188 |
+
while has_next and len(all_reviews) < max_reviews:
|
189 |
+
response = request_product_review(product_id, page=page)
|
190 |
+
if not response:
|
191 |
+
break
|
192 |
+
data = response.json()["data"]["productrevGetProductReviewList"]
|
193 |
+
reviews = data["list"]
|
194 |
+
all_reviews.extend(reviews)
|
195 |
+
has_next = data["hasNext"]
|
196 |
+
page += 1
|
197 |
reviews_df = pd.json_normalize(all_reviews)
|
198 |
reviews_df.rename(columns={"message": "comment"}, inplace=True)
|
199 |
reviews_df = reviews_df[["comment"]]
|
|
|
201 |
return reviews_df
|
202 |
|
203 |
|
204 |
+
# Function to extract product ID from URL
|
205 |
def get_product_id(URL):
|
206 |
parsed_url = urlparse(URL)
|
207 |
+
_, shop, product_key = parsed_url.path.strip("/").split("/")
|
208 |
+
response = request_product_id(shop, product_key)
|
209 |
+
if response:
|
210 |
+
product_id = response.json()["data"]["pdpGetLayout"]["basicInfo"]["id"]
|
211 |
+
logger.info(f"Product ID: {product_id}")
|
212 |
+
return product_id
|
213 |
+
else:
|
214 |
+
logger.error("Failed to get product ID")
|
215 |
+
return None
|
216 |
|
217 |
|
218 |
+
# Function to clean the reviews DataFrame
|
219 |
def clean(df):
|
220 |
+
df = df.dropna().copy().reset_index(drop=True) # Drop reviews with empty comments
|
221 |
+
df = df[df["comment"] != ""].reset_index(drop=True) # Remove empty reviews
|
222 |
+
df["comment"] = df["comment"].apply(lambda x: clean_text(x)) # Clean text
|
223 |
+
df = df[df["comment"] != ""].reset_index(drop=True) # Remove empty reviews
|
224 |
+
logger.info("Cleaned reviews DataFrame")
|
225 |
return df
|
226 |
|
227 |
|
228 |
+
# Function to clean individual text entries
|
229 |
def clean_text(text):
|
230 |
+
text = uni.normalize("NFKD", text) # Normalize characters
|
231 |
+
text = emoji.replace_emoji(text, "") # Remove emoji
|
232 |
+
text = re.sub(r"(\w)\1{2,}", r"\1", text) # Remove repeated characters
|
233 |
+
text = re.sub(r"[ ]+", " ", text).strip() # Remove extra spaces
|
234 |
return text
|
235 |
|
236 |
|
237 |
+
# Initialize LLM and embeddings
|
|
|
238 |
llm = ChatOpenAI(model=OpenAIModel, temperature=0.1)
|
|
|
|
|
239 |
embeddings = HuggingFaceEmbeddings(model_name="LazarusNLP/all-indobert-base-v2")
|
240 |
|
|
|
|
|
|
|
|
|
|
|
241 |
|
242 |
+
# Function to generate a summary or answer based on reviews
|
243 |
@spaces.GPU
|
244 |
async def generate(URL, query):
|
245 |
global cache_URL, db, qa, cache
|
246 |
|
247 |
+
if not URL or not query:
|
248 |
return "Input kosong"
|
249 |
+
try:
|
250 |
+
product_id = get_product_id(URL)
|
251 |
+
if not product_id:
|
252 |
+
return "Gagal mendapatkan product ID"
|
253 |
+
|
254 |
+
if URL not in cache:
|
255 |
+
reviews = scrape(product_id)
|
256 |
+
if reviews.empty:
|
257 |
+
return "Tidak ada ulasan ditemukan"
|
258 |
+
|
259 |
+
cleaned_reviews = clean(reviews)
|
260 |
+
loader = DataFrameLoader(cleaned_reviews, page_content_column="comment")
|
261 |
+
documents = loader.load()
|
262 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
263 |
+
chunk_size=1000, chunk_overlap=50
|
264 |
+
)
|
265 |
+
docs = text_splitter.split_documents(documents)
|
266 |
+
db = FAISS.from_documents(docs, embeddings)
|
267 |
+
cache[URL] = (docs, db)
|
268 |
+
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
docs, db = cache[URL]
|
270 |
|
271 |
+
qa = RetrievalQA.from_chain_type(llm=llm, retriever=db.as_retriever())
|
272 |
+
res = await qa.ainvoke(query)
|
273 |
+
return res["result"]
|
274 |
+
except Exception as e:
|
275 |
+
logger.error(f"Error in generating response: {e}")
|
276 |
+
return "Gagal mendapatkan review dari URL"
|
|
|
|
|
277 |
|
278 |
|
279 |
+
# Set up Gradio interface
|
280 |
product_box = gr.Textbox(label="URL Produk", placeholder="URL produk dari Tokopedia")
|
281 |
query_box = gr.Textbox(
|
282 |
lines=2,
|