Spaces:
Sleeping
Sleeping
File size: 17,244 Bytes
879cbd2 5422b18 879cbd2 5422b18 879cbd2 5422b18 50ea4f2 352a927 5422b18 879cbd2 5422b18 879cbd2 5422b18 50ea4f2 5422b18 352a927 50ea4f2 352a927 50ea4f2 879cbd2 5422b18 879cbd2 28fb579 879cbd2 50ea4f2 879cbd2 5422b18 50ea4f2 879cbd2 5422b18 352a927 7714f93 5422b18 879cbd2 2927e53 879cbd2 5422b18 879cbd2 5422b18 879cbd2 5422b18 879cbd2 5422b18 879cbd2 5422b18 879cbd2 50ea4f2 c864f13 879cbd2 5422b18 879cbd2 5422b18 c864f13 5422b18 c864f13 879cbd2 352a927 879cbd2 ccbc190 352a927 5422b18 c864f13 879cbd2 0a949ac ccbc190 879cbd2 0a949ac 879cbd2 352a927 ccbc190 879cbd2 0a949ac 879cbd2 0a949ac 879cbd2 0a949ac 879cbd2 5422b18 879cbd2 0a949ac 879cbd2 5422b18 879cbd2 0a949ac 879cbd2 5422b18 50ea4f2 5422b18 50ea4f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
# flake8: noqa: E402
import os
import logging
import re_matching
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.basicConfig(
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)
logger = logging.getLogger(__name__)
import warnings
warnings.filterwarnings("ignore", category=UserWarning, module="gradio.blocks")
import shutil
from datetime import datetime
import re
import torch
import utils
from infer import infer, latest_version, get_net_g
import gradio as gr
import numpy as np
from tools.sentence import extrac, is_japanese, is_chinese, seconds_to_ass_time, extract_text_from_file, remove_annotations
import sys
import math
from scipy.io.wavfile import write
from tools.translate import translate
import random
net_g = None
cara_list = ["ひまり","たえ","彩","日菜","美咲","ましろ","燐子","香子","珠緒","たえ"]
BandList = {
"PoppinParty":["香澄","有咲","たえ","りみ","沙綾"],
"Afterglow":["蘭","モカ","ひまり","巴","つぐみ"],
"HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"],
"PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"],
"Roselia":["友希那","紗夜","リサ","燐子","あこ"],
"RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"],
"Morfonica":["ましろ","瑠唯","つくし","七深","透子"],
"MyGo&AveMujica(Part)":["燈","愛音","そよ","立希","楽奈","祥子","睦","海鈴"],
"圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"],
"凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"],
"弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"],
"西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"]
}
device = (
"cuda:0"
if torch.cuda.is_available()
else (
"mps"
if sys.platform == "darwin" and torch.backends.mps.is_available()
else "cpu"
)
)
def generate_audio(
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
speaker,
language,
):
if len(text) < 2:
return
with torch.no_grad():
if language == 'Auto':
language = "EN"
if is_japanese(text):
language = "JP"
elif is_chinese(text):
language = "ZH"
current_time = datetime.now()
print(str(current_time)+':'+str(speaker)+":"+language)
audio = infer(
text,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
language=language,
hps=hps,
net_g=net_g,
device=device,
)
return gr.processing_utils.convert_to_16_bit_wav(audio)
def tts_fn(
text: str,
speaker,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
language,
LongSentence,
):
if not LongSentence:
with torch.no_grad():
audio = generate_audio(
text,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
speaker=speaker,
language= language,
)
torch.cuda.empty_cache()
return (hps.data.sampling_rate, audio)
else:
final_list = extrac(text)
audio_fin = []
for sentence in final_list:
if len(sentence) > 1:
with torch.no_grad():
audio = generate_audio(
sentence,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
speaker=speaker,
language= language,
)
silence_frames = int(math.log(len(sentence)+1, 1000) * 44010) if is_chinese(sentence) else int(math.log(len(sentence)+1, 3000) * 44010)
silence_data = np.zeros((silence_frames,), dtype=audio.dtype)
audio_fin.append(audio)
audio_fin.append(silence_data)
return (hps.data.sampling_rate, np.concatenate(audio_fin))
def generate_audio_and_srt_for_group(group, outputPath, group_index, sampling_rate, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime):
audio_fin = []
ass_entries = []
start_time = 0
speaker = random.choice(cara_list)
ass_header = """[Script Info]
; 我没意见
Title: Audiobook
ScriptType: v4.00+
WrapStyle: 0
PlayResX: 640
PlayResY: 360
ScaledBorderAndShadow: yes
[V4+ Styles]
Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour, BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding
Style: Default,Arial,20,&H00FFFFFF,&H000000FF,&H00000000,&H00000000,0,0,0,0,100,100,0,0,1,1,1,2,10,10,10,1
[Events]
Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text
"""
for sentence in group:
try:
FakeSpeaker = sentence.split("|")[0]
print(FakeSpeaker)
SpeakersList = re.split('\n', spealerList)
if FakeSpeaker in list(hps.data.spk2id.keys()):
speaker = FakeSpeaker
for i in SpeakersList:
if FakeSpeaker == i.split("|")[1]:
speaker = i.split("|")[0]
if sentence != '\n':
audio = generate_audio(remove_annotations(sentence.split("|")[-1]).replace(" ",""), speaker=speaker, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, language='Auto')
silence_frames = int(silenceTime * 44010)
silence_data = np.zeros((silence_frames,), dtype=audio.dtype)
audio_fin.append(audio)
audio_fin.append(silence_data)
duration = len(audio) / sampling_rate
end_time = start_time + duration + silenceTime
ass_entries.append("Dialogue: 0,{},{},".format(seconds_to_ass_time(start_time), seconds_to_ass_time(end_time)) + "Default,,0,0,0,,{}".format(sentence.replace("|",":")))
start_time = end_time
except:
pass
wav_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.wav')
ass_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.ass')
write(wav_filename, sampling_rate, np.concatenate(audio_fin))
with open(ass_filename, 'w', encoding='utf-8') as f:
f.write(ass_header + '\n'.join(ass_entries))
return (hps.data.sampling_rate, np.concatenate(audio_fin))
def audiobook(inputFile, groupsize, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime,filepath):
directory_path = filepath if torch.cuda.is_available() else "books"
if os.path.exists(directory_path):
shutil.rmtree(directory_path)
os.makedirs(directory_path)
text = extract_text_from_file(inputFile.name)
sentences = extrac(text)
GROUP_SIZE = groupsize
for i in range(0, len(sentences), GROUP_SIZE):
group = sentences[i:i+GROUP_SIZE]
if spealerList == "":
spealerList = "无"
result = generate_audio_and_srt_for_group(group,directory_path, i//GROUP_SIZE + 1, 44100, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime)
if not torch.cuda.is_available():
return result
return result
def loadmodel(model):
_ = net_g.eval()
_ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True)
return "success"
if __name__ == "__main__":
hps = utils.get_hparams_from_file('Data/BangDream/config.json')
version = hps.version if hasattr(hps, "version") else latest_version
net_g = get_net_g(
model_path='Data/BangDream/models/G_10000.pth', version=version, device=device, hps=hps
)
speaker_ids = hps.data.spk2id
speakers = list(speaker_ids.keys())
languages = [ "Auto", "ZH", "JP"]
modelPaths = []
for dirpath, dirnames, filenames in os.walk("Data/BangDream/models/"):
for filename in filenames:
modelPaths.append(os.path.join(dirpath, filename))
with gr.Blocks() as app:
gr.Markdown(value="""
少歌邦邦全员在线语音合成(Bert-Vits2)\n
作者:B站@Mahiroshi https://space.bilibili.com/19874615\n
声音归属:BangDream及少歌手游\n
Bert-VITS2项目:https://github.com/Stardust-minus/Bert-VITS2\n
使用参考: https://nijigaku.top/2023/10/03/BangDreamTTS\n
数据集制作: https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/tree/main/%E7%88%AC%E8%99%AB
服务器启动示例: https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/blob/main/server.py\n
使用本模型请严格遵守法律法规!禁止生成任何有损声优或者企划的内容!!!!!\n
このモデルを使用する際は法律法規を厳守してください!声優や企画に損害を与える内容の生成は禁止です!!!!!\n
Please strictly follow the laws in your country and regulations when using this model! It is prohibited to generate any content that is harmful to others!!!!!\n
发布二创作品请标注本项目作者及链接、作品使用Bert-VITS2 AI生成!\n
""")
for band in BandList:
with gr.TabItem(band):
for name in BandList[band]:
with gr.TabItem(name):
with gr.Row():
with gr.Column():
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<img style="width:auto;height:400px;" src="file/image/{name}.png">'
'</div>'
)
length_scale = gr.Slider(
minimum=0.1, maximum=2, value=1, step=0.01, label="语速调节"
)
LongSentence = gr.Checkbox(value=True, label="自动拆分句子")
with gr.Accordion(label="切换模型", open=False):
modelstrs = gr.Dropdown(label = "模型", choices = modelPaths, value = modelPaths[0], type = "value")
btnMod = gr.Button("载入模型")
statusa = gr.TextArea()
btnMod.click(loadmodel, inputs=[modelstrs], outputs = [statusa])
with gr.Column():
text = gr.TextArea(
label="输入纯日语或者中文",
placeholder="输入纯日语或者中文",
value="有个人躺在地上,哀嚎......\n有个人睡着了,睡在盒子里。\n我要把它打开,看看他的梦是什么。",
)
btn = gr.Button("点击生成", variant="primary")
audio_output = gr.Audio(label="Output Audio")
btntran = gr.Button("快速中翻日")
translateResult = gr.TextArea("从这复制翻译后的文本")
btntran.click(translate, inputs=[text], outputs = [translateResult])
with gr.Accordion(label="其它参数设定", open=False):
sdp_ratio = gr.Slider(
minimum=0, maximum=1, value=0.2, step=0.01, label="SDP/DP混合比"
)
noise_scale = gr.Slider(
minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节"
)
noise_scale_w = gr.Slider(
minimum=0.1, maximum=2, value=0.8, step=0.01, label="音素长度"
)
language = gr.Dropdown(
choices=languages, value=languages[0], label="选择语言(默认自动)"
)
speaker = gr.Dropdown(
choices=speakers, value=name, label="说话人"
)
btn.click(
tts_fn,
inputs=[
text,
speaker,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
language,
LongSentence,
],
outputs=[audio_output],
)
with gr.Tab('拓展功能'):
with gr.Row():
with gr.Column():
gr.Markdown(
f"从 <a href='https://nijigaku.top/2023/10/03/BangDreamTTS/'>我的博客站点</a> 查看自制galgame使用说明\n</a>"
)
inputFile = gr.UploadButton(label="上传txt(可设置角色对应表)、epub或mobi文件")
groupSize = gr.Slider(
minimum=10, maximum=1000 if torch.cuda.is_available() else 50,value = 50, step=1, label="单个音频文件包含的最大字数"
)
silenceTime = gr.Slider(
minimum=0, maximum=1, value=0.5, step=0.1, label="句子的间隔"
)
filepath = gr.TextArea(
label="本地合成时的音频存储文件夹(会清空文件夹警告)",
value = "D:/audiobook/book1",
)
spealerList = gr.TextArea(
label="角色对应表(example)",
placeholder="左边是你想要在每一句话合成中用到的speaker(见角色清单)右边是你上传文本时分隔符左边设置的说话人:{ChoseSpeakerFromConfigList1}|{SeakerInUploadText1}\n{ChoseSpeakerFromConfigList2}|{SeakerInUploadText2}\n{ChoseSpeakerFromConfigList3}|{SeakerInUploadText3}\n",
value = "ましろ|真白\n七深|七深\n透子|透子\nつくし|筑紫\n瑠唯|瑠唯\nそよ|素世\n祥子|祥子",
)
speaker = gr.Dropdown(
choices=speakers, value = "ましろ", label="选择默认说话人"
)
with gr.Column():
sdp_ratio = gr.Slider(
minimum=0, maximum=1, value=0.2, step=0.01, label="SDP/DP混合比"
)
noise_scale = gr.Slider(
minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节"
)
noise_scale_w = gr.Slider(
minimum=0.1, maximum=2, value=0.8, step=0.01, label="音素长度"
)
length_scale = gr.Slider(
minimum=0.1, maximum=2, value=1, step=0.01, label="生成长度"
)
LastAudioOutput = gr.Audio(label="当使用cuda时才能在本地文件夹浏览全部文件")
btn2 = gr.Button("点击生成", variant="primary")
btn2.click(
audiobook,
inputs=[
inputFile,
groupSize,
speaker,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
spealerList,
silenceTime,
filepath
],
outputs=[LastAudioOutput],
)
print("推理页面已开启!")
app.launch() |