Mahiruoshi commited on
Commit
879cbd2
·
1 Parent(s): b4ee22e

Upload 122 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. LICENSE +661 -0
  2. app.py +290 -0
  3. attentions.py +464 -0
  4. bert/bert-base-japanese-v3/.gitattributes +34 -0
  5. bert/bert-base-japanese-v3/README.md +53 -0
  6. bert/bert-base-japanese-v3/config.json +19 -0
  7. bert/bert-base-japanese-v3/flax_model.msgpack +3 -0
  8. bert/bert-base-japanese-v3/pytorch_model.bin +3 -0
  9. bert/bert-base-japanese-v3/tf_model.h5 +3 -0
  10. bert/bert-base-japanese-v3/tokenizer_config.json +10 -0
  11. bert/bert-base-japanese-v3/vocab.txt +0 -0
  12. bert/chinese-roberta-wwm-ext-large/.gitattributes +9 -0
  13. bert/chinese-roberta-wwm-ext-large/README.md +57 -0
  14. bert/chinese-roberta-wwm-ext-large/added_tokens.json +1 -0
  15. bert/chinese-roberta-wwm-ext-large/config.json +28 -0
  16. bert/chinese-roberta-wwm-ext-large/flax_model.msgpack +3 -0
  17. bert/chinese-roberta-wwm-ext-large/pytorch_model.bin +3 -0
  18. bert/chinese-roberta-wwm-ext-large/special_tokens_map.json +1 -0
  19. bert/chinese-roberta-wwm-ext-large/tf_model.h5 +3 -0
  20. bert/chinese-roberta-wwm-ext-large/tokenizer.json +0 -0
  21. bert/chinese-roberta-wwm-ext-large/tokenizer_config.json +1 -0
  22. bert/chinese-roberta-wwm-ext-large/vocab.txt +0 -0
  23. bert_gen.py +60 -0
  24. commons.py +160 -0
  25. configs/config.json +119 -0
  26. data_utils.py +406 -0
  27. image/image.png +0 -0
  28. image//343/201/202/343/201/223.png +0 -0
  29. image//343/201/223/343/201/223/343/202/215.png +0 -0
  30. image//343/201/235/343/202/210.png +0 -0
  31. image//343/201/237/343/201/210.png +0 -0
  32. image//343/201/244/343/201/217/343/201/227.png +0 -0
  33. image//343/201/244/343/201/220/343/201/277.png +0 -0
  34. image//343/201/253/343/202/203/343/202/200.png +0 -0
  35. image//343/201/257/343/201/220/343/201/277.png +0 -0
  36. image//343/201/262/343/201/276/343/202/212.png +0 -0
  37. image//343/201/276/343/201/227/343/202/215.png +0 -0
  38. image//343/201/276/343/201/231/343/201/215.png +0 -0
  39. image//343/202/212/343/201/277.png +0 -0
  40. image//343/202/244/343/203/264.png +0 -0
  41. image//343/203/201/343/203/245/343/203/201/343/203/245.png +0 -0
  42. image//343/203/221/343/203/254/343/202/252.png +0 -0
  43. image//343/203/236/343/202/271/343/202/255/343/203/263/343/202/260.png +0 -0
  44. image//343/203/237/343/203/203/343/202/267/343/202/247/343/203/253.png +0 -0
  45. image//343/203/242/343/202/253.png +0 -0
  46. image//343/203/252/343/202/265.png +0 -0
  47. image//343/203/254/343/202/244/343/203/244.png +0 -0
  48. image//343/203/255/343/203/203/343/202/257.png +0 -0
  49. image//344/270/203/346/267/261.png +0 -0
  50. image//345/210/235/350/217/257.png +0 -0
LICENSE ADDED
@@ -0,0 +1,661 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU AFFERO GENERAL PUBLIC LICENSE
2
+ Version 3, 19 November 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU Affero General Public License is a free, copyleft license for
11
+ software and other kinds of works, specifically designed to ensure
12
+ cooperation with the community in the case of network server software.
13
+
14
+ The licenses for most software and other practical works are designed
15
+ to take away your freedom to share and change the works. By contrast,
16
+ our General Public Licenses are intended to guarantee your freedom to
17
+ share and change all versions of a program--to make sure it remains free
18
+ software for all its users.
19
+
20
+ When we speak of free software, we are referring to freedom, not
21
+ price. Our General Public Licenses are designed to make sure that you
22
+ have the freedom to distribute copies of free software (and charge for
23
+ them if you wish), that you receive source code or can get it if you
24
+ want it, that you can change the software or use pieces of it in new
25
+ free programs, and that you know you can do these things.
26
+
27
+ Developers that use our General Public Licenses protect your rights
28
+ with two steps: (1) assert copyright on the software, and (2) offer
29
+ you this License which gives you legal permission to copy, distribute
30
+ and/or modify the software.
31
+
32
+ A secondary benefit of defending all users' freedom is that
33
+ improvements made in alternate versions of the program, if they
34
+ receive widespread use, become available for other developers to
35
+ incorporate. Many developers of free software are heartened and
36
+ encouraged by the resulting cooperation. However, in the case of
37
+ software used on network servers, this result may fail to come about.
38
+ The GNU General Public License permits making a modified version and
39
+ letting the public access it on a server without ever releasing its
40
+ source code to the public.
41
+
42
+ The GNU Affero General Public License is designed specifically to
43
+ ensure that, in such cases, the modified source code becomes available
44
+ to the community. It requires the operator of a network server to
45
+ provide the source code of the modified version running there to the
46
+ users of that server. Therefore, public use of a modified version, on
47
+ a publicly accessible server, gives the public access to the source
48
+ code of the modified version.
49
+
50
+ An older license, called the Affero General Public License and
51
+ published by Affero, was designed to accomplish similar goals. This is
52
+ a different license, not a version of the Affero GPL, but Affero has
53
+ released a new version of the Affero GPL which permits relicensing under
54
+ this license.
55
+
56
+ The precise terms and conditions for copying, distribution and
57
+ modification follow.
58
+
59
+ TERMS AND CONDITIONS
60
+
61
+ 0. Definitions.
62
+
63
+ "This License" refers to version 3 of the GNU Affero General Public License.
64
+
65
+ "Copyright" also means copyright-like laws that apply to other kinds of
66
+ works, such as semiconductor masks.
67
+
68
+ "The Program" refers to any copyrightable work licensed under this
69
+ License. Each licensee is addressed as "you". "Licensees" and
70
+ "recipients" may be individuals or organizations.
71
+
72
+ To "modify" a work means to copy from or adapt all or part of the work
73
+ in a fashion requiring copyright permission, other than the making of an
74
+ exact copy. The resulting work is called a "modified version" of the
75
+ earlier work or a work "based on" the earlier work.
76
+
77
+ A "covered work" means either the unmodified Program or a work based
78
+ on the Program.
79
+
80
+ To "propagate" a work means to do anything with it that, without
81
+ permission, would make you directly or secondarily liable for
82
+ infringement under applicable copyright law, except executing it on a
83
+ computer or modifying a private copy. Propagation includes copying,
84
+ distribution (with or without modification), making available to the
85
+ public, and in some countries other activities as well.
86
+
87
+ To "convey" a work means any kind of propagation that enables other
88
+ parties to make or receive copies. Mere interaction with a user through
89
+ a computer network, with no transfer of a copy, is not conveying.
90
+
91
+ An interactive user interface displays "Appropriate Legal Notices"
92
+ to the extent that it includes a convenient and prominently visible
93
+ feature that (1) displays an appropriate copyright notice, and (2)
94
+ tells the user that there is no warranty for the work (except to the
95
+ extent that warranties are provided), that licensees may convey the
96
+ work under this License, and how to view a copy of this License. If
97
+ the interface presents a list of user commands or options, such as a
98
+ menu, a prominent item in the list meets this criterion.
99
+
100
+ 1. Source Code.
101
+
102
+ The "source code" for a work means the preferred form of the work
103
+ for making modifications to it. "Object code" means any non-source
104
+ form of a work.
105
+
106
+ A "Standard Interface" means an interface that either is an official
107
+ standard defined by a recognized standards body, or, in the case of
108
+ interfaces specified for a particular programming language, one that
109
+ is widely used among developers working in that language.
110
+
111
+ The "System Libraries" of an executable work include anything, other
112
+ than the work as a whole, that (a) is included in the normal form of
113
+ packaging a Major Component, but which is not part of that Major
114
+ Component, and (b) serves only to enable use of the work with that
115
+ Major Component, or to implement a Standard Interface for which an
116
+ implementation is available to the public in source code form. A
117
+ "Major Component", in this context, means a major essential component
118
+ (kernel, window system, and so on) of the specific operating system
119
+ (if any) on which the executable work runs, or a compiler used to
120
+ produce the work, or an object code interpreter used to run it.
121
+
122
+ The "Corresponding Source" for a work in object code form means all
123
+ the source code needed to generate, install, and (for an executable
124
+ work) run the object code and to modify the work, including scripts to
125
+ control those activities. However, it does not include the work's
126
+ System Libraries, or general-purpose tools or generally available free
127
+ programs which are used unmodified in performing those activities but
128
+ which are not part of the work. For example, Corresponding Source
129
+ includes interface definition files associated with source files for
130
+ the work, and the source code for shared libraries and dynamically
131
+ linked subprograms that the work is specifically designed to require,
132
+ such as by intimate data communication or control flow between those
133
+ subprograms and other parts of the work.
134
+
135
+ The Corresponding Source need not include anything that users
136
+ can regenerate automatically from other parts of the Corresponding
137
+ Source.
138
+
139
+ The Corresponding Source for a work in source code form is that
140
+ same work.
141
+
142
+ 2. Basic Permissions.
143
+
144
+ All rights granted under this License are granted for the term of
145
+ copyright on the Program, and are irrevocable provided the stated
146
+ conditions are met. This License explicitly affirms your unlimited
147
+ permission to run the unmodified Program. The output from running a
148
+ covered work is covered by this License only if the output, given its
149
+ content, constitutes a covered work. This License acknowledges your
150
+ rights of fair use or other equivalent, as provided by copyright law.
151
+
152
+ You may make, run and propagate covered works that you do not
153
+ convey, without conditions so long as your license otherwise remains
154
+ in force. You may convey covered works to others for the sole purpose
155
+ of having them make modifications exclusively for you, or provide you
156
+ with facilities for running those works, provided that you comply with
157
+ the terms of this License in conveying all material for which you do
158
+ not control copyright. Those thus making or running the covered works
159
+ for you must do so exclusively on your behalf, under your direction
160
+ and control, on terms that prohibit them from making any copies of
161
+ your copyrighted material outside their relationship with you.
162
+
163
+ Conveying under any other circumstances is permitted solely under
164
+ the conditions stated below. Sublicensing is not allowed; section 10
165
+ makes it unnecessary.
166
+
167
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168
+
169
+ No covered work shall be deemed part of an effective technological
170
+ measure under any applicable law fulfilling obligations under article
171
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172
+ similar laws prohibiting or restricting circumvention of such
173
+ measures.
174
+
175
+ When you convey a covered work, you waive any legal power to forbid
176
+ circumvention of technological measures to the extent such circumvention
177
+ is effected by exercising rights under this License with respect to
178
+ the covered work, and you disclaim any intention to limit operation or
179
+ modification of the work as a means of enforcing, against the work's
180
+ users, your or third parties' legal rights to forbid circumvention of
181
+ technological measures.
182
+
183
+ 4. Conveying Verbatim Copies.
184
+
185
+ You may convey verbatim copies of the Program's source code as you
186
+ receive it, in any medium, provided that you conspicuously and
187
+ appropriately publish on each copy an appropriate copyright notice;
188
+ keep intact all notices stating that this License and any
189
+ non-permissive terms added in accord with section 7 apply to the code;
190
+ keep intact all notices of the absence of any warranty; and give all
191
+ recipients a copy of this License along with the Program.
192
+
193
+ You may charge any price or no price for each copy that you convey,
194
+ and you may offer support or warranty protection for a fee.
195
+
196
+ 5. Conveying Modified Source Versions.
197
+
198
+ You may convey a work based on the Program, or the modifications to
199
+ produce it from the Program, in the form of source code under the
200
+ terms of section 4, provided that you also meet all of these conditions:
201
+
202
+ a) The work must carry prominent notices stating that you modified
203
+ it, and giving a relevant date.
204
+
205
+ b) The work must carry prominent notices stating that it is
206
+ released under this License and any conditions added under section
207
+ 7. This requirement modifies the requirement in section 4 to
208
+ "keep intact all notices".
209
+
210
+ c) You must license the entire work, as a whole, under this
211
+ License to anyone who comes into possession of a copy. This
212
+ License will therefore apply, along with any applicable section 7
213
+ additional terms, to the whole of the work, and all its parts,
214
+ regardless of how they are packaged. This License gives no
215
+ permission to license the work in any other way, but it does not
216
+ invalidate such permission if you have separately received it.
217
+
218
+ d) If the work has interactive user interfaces, each must display
219
+ Appropriate Legal Notices; however, if the Program has interactive
220
+ interfaces that do not display Appropriate Legal Notices, your
221
+ work need not make them do so.
222
+
223
+ A compilation of a covered work with other separate and independent
224
+ works, which are not by their nature extensions of the covered work,
225
+ and which are not combined with it such as to form a larger program,
226
+ in or on a volume of a storage or distribution medium, is called an
227
+ "aggregate" if the compilation and its resulting copyright are not
228
+ used to limit the access or legal rights of the compilation's users
229
+ beyond what the individual works permit. Inclusion of a covered work
230
+ in an aggregate does not cause this License to apply to the other
231
+ parts of the aggregate.
232
+
233
+ 6. Conveying Non-Source Forms.
234
+
235
+ You may convey a covered work in object code form under the terms
236
+ of sections 4 and 5, provided that you also convey the
237
+ machine-readable Corresponding Source under the terms of this License,
238
+ in one of these ways:
239
+
240
+ a) Convey the object code in, or embodied in, a physical product
241
+ (including a physical distribution medium), accompanied by the
242
+ Corresponding Source fixed on a durable physical medium
243
+ customarily used for software interchange.
244
+
245
+ b) Convey the object code in, or embodied in, a physical product
246
+ (including a physical distribution medium), accompanied by a
247
+ written offer, valid for at least three years and valid for as
248
+ long as you offer spare parts or customer support for that product
249
+ model, to give anyone who possesses the object code either (1) a
250
+ copy of the Corresponding Source for all the software in the
251
+ product that is covered by this License, on a durable physical
252
+ medium customarily used for software interchange, for a price no
253
+ more than your reasonable cost of physically performing this
254
+ conveying of source, or (2) access to copy the
255
+ Corresponding Source from a network server at no charge.
256
+
257
+ c) Convey individual copies of the object code with a copy of the
258
+ written offer to provide the Corresponding Source. This
259
+ alternative is allowed only occasionally and noncommercially, and
260
+ only if you received the object code with such an offer, in accord
261
+ with subsection 6b.
262
+
263
+ d) Convey the object code by offering access from a designated
264
+ place (gratis or for a charge), and offer equivalent access to the
265
+ Corresponding Source in the same way through the same place at no
266
+ further charge. You need not require recipients to copy the
267
+ Corresponding Source along with the object code. If the place to
268
+ copy the object code is a network server, the Corresponding Source
269
+ may be on a different server (operated by you or a third party)
270
+ that supports equivalent copying facilities, provided you maintain
271
+ clear directions next to the object code saying where to find the
272
+ Corresponding Source. Regardless of what server hosts the
273
+ Corresponding Source, you remain obligated to ensure that it is
274
+ available for as long as needed to satisfy these requirements.
275
+
276
+ e) Convey the object code using peer-to-peer transmission, provided
277
+ you inform other peers where the object code and Corresponding
278
+ Source of the work are being offered to the general public at no
279
+ charge under subsection 6d.
280
+
281
+ A separable portion of the object code, whose source code is excluded
282
+ from the Corresponding Source as a System Library, need not be
283
+ included in conveying the object code work.
284
+
285
+ A "User Product" is either (1) a "consumer product", which means any
286
+ tangible personal property which is normally used for personal, family,
287
+ or household purposes, or (2) anything designed or sold for incorporation
288
+ into a dwelling. In determining whether a product is a consumer product,
289
+ doubtful cases shall be resolved in favor of coverage. For a particular
290
+ product received by a particular user, "normally used" refers to a
291
+ typical or common use of that class of product, regardless of the status
292
+ of the particular user or of the way in which the particular user
293
+ actually uses, or expects or is expected to use, the product. A product
294
+ is a consumer product regardless of whether the product has substantial
295
+ commercial, industrial or non-consumer uses, unless such uses represent
296
+ the only significant mode of use of the product.
297
+
298
+ "Installation Information" for a User Product means any methods,
299
+ procedures, authorization keys, or other information required to install
300
+ and execute modified versions of a covered work in that User Product from
301
+ a modified version of its Corresponding Source. The information must
302
+ suffice to ensure that the continued functioning of the modified object
303
+ code is in no case prevented or interfered with solely because
304
+ modification has been made.
305
+
306
+ If you convey an object code work under this section in, or with, or
307
+ specifically for use in, a User Product, and the conveying occurs as
308
+ part of a transaction in which the right of possession and use of the
309
+ User Product is transferred to the recipient in perpetuity or for a
310
+ fixed term (regardless of how the transaction is characterized), the
311
+ Corresponding Source conveyed under this section must be accompanied
312
+ by the Installation Information. But this requirement does not apply
313
+ if neither you nor any third party retains the ability to install
314
+ modified object code on the User Product (for example, the work has
315
+ been installed in ROM).
316
+
317
+ The requirement to provide Installation Information does not include a
318
+ requirement to continue to provide support service, warranty, or updates
319
+ for a work that has been modified or installed by the recipient, or for
320
+ the User Product in which it has been modified or installed. Access to a
321
+ network may be denied when the modification itself materially and
322
+ adversely affects the operation of the network or violates the rules and
323
+ protocols for communication across the network.
324
+
325
+ Corresponding Source conveyed, and Installation Information provided,
326
+ in accord with this section must be in a format that is publicly
327
+ documented (and with an implementation available to the public in
328
+ source code form), and must require no special password or key for
329
+ unpacking, reading or copying.
330
+
331
+ 7. Additional Terms.
332
+
333
+ "Additional permissions" are terms that supplement the terms of this
334
+ License by making exceptions from one or more of its conditions.
335
+ Additional permissions that are applicable to the entire Program shall
336
+ be treated as though they were included in this License, to the extent
337
+ that they are valid under applicable law. If additional permissions
338
+ apply only to part of the Program, that part may be used separately
339
+ under those permissions, but the entire Program remains governed by
340
+ this License without regard to the additional permissions.
341
+
342
+ When you convey a copy of a covered work, you may at your option
343
+ remove any additional permissions from that copy, or from any part of
344
+ it. (Additional permissions may be written to require their own
345
+ removal in certain cases when you modify the work.) You may place
346
+ additional permissions on material, added by you to a covered work,
347
+ for which you have or can give appropriate copyright permission.
348
+
349
+ Notwithstanding any other provision of this License, for material you
350
+ add to a covered work, you may (if authorized by the copyright holders of
351
+ that material) supplement the terms of this License with terms:
352
+
353
+ a) Disclaiming warranty or limiting liability differently from the
354
+ terms of sections 15 and 16 of this License; or
355
+
356
+ b) Requiring preservation of specified reasonable legal notices or
357
+ author attributions in that material or in the Appropriate Legal
358
+ Notices displayed by works containing it; or
359
+
360
+ c) Prohibiting misrepresentation of the origin of that material, or
361
+ requiring that modified versions of such material be marked in
362
+ reasonable ways as different from the original version; or
363
+
364
+ d) Limiting the use for publicity purposes of names of licensors or
365
+ authors of the material; or
366
+
367
+ e) Declining to grant rights under trademark law for use of some
368
+ trade names, trademarks, or service marks; or
369
+
370
+ f) Requiring indemnification of licensors and authors of that
371
+ material by anyone who conveys the material (or modified versions of
372
+ it) with contractual assumptions of liability to the recipient, for
373
+ any liability that these contractual assumptions directly impose on
374
+ those licensors and authors.
375
+
376
+ All other non-permissive additional terms are considered "further
377
+ restrictions" within the meaning of section 10. If the Program as you
378
+ received it, or any part of it, contains a notice stating that it is
379
+ governed by this License along with a term that is a further
380
+ restriction, you may remove that term. If a license document contains
381
+ a further restriction but permits relicensing or conveying under this
382
+ License, you may add to a covered work material governed by the terms
383
+ of that license document, provided that the further restriction does
384
+ not survive such relicensing or conveying.
385
+
386
+ If you add terms to a covered work in accord with this section, you
387
+ must place, in the relevant source files, a statement of the
388
+ additional terms that apply to those files, or a notice indicating
389
+ where to find the applicable terms.
390
+
391
+ Additional terms, permissive or non-permissive, may be stated in the
392
+ form of a separately written license, or stated as exceptions;
393
+ the above requirements apply either way.
394
+
395
+ 8. Termination.
396
+
397
+ You may not propagate or modify a covered work except as expressly
398
+ provided under this License. Any attempt otherwise to propagate or
399
+ modify it is void, and will automatically terminate your rights under
400
+ this License (including any patent licenses granted under the third
401
+ paragraph of section 11).
402
+
403
+ However, if you cease all violation of this License, then your
404
+ license from a particular copyright holder is reinstated (a)
405
+ provisionally, unless and until the copyright holder explicitly and
406
+ finally terminates your license, and (b) permanently, if the copyright
407
+ holder fails to notify you of the violation by some reasonable means
408
+ prior to 60 days after the cessation.
409
+
410
+ Moreover, your license from a particular copyright holder is
411
+ reinstated permanently if the copyright holder notifies you of the
412
+ violation by some reasonable means, this is the first time you have
413
+ received notice of violation of this License (for any work) from that
414
+ copyright holder, and you cure the violation prior to 30 days after
415
+ your receipt of the notice.
416
+
417
+ Termination of your rights under this section does not terminate the
418
+ licenses of parties who have received copies or rights from you under
419
+ this License. If your rights have been terminated and not permanently
420
+ reinstated, you do not qualify to receive new licenses for the same
421
+ material under section 10.
422
+
423
+ 9. Acceptance Not Required for Having Copies.
424
+
425
+ You are not required to accept this License in order to receive or
426
+ run a copy of the Program. Ancillary propagation of a covered work
427
+ occurring solely as a consequence of using peer-to-peer transmission
428
+ to receive a copy likewise does not require acceptance. However,
429
+ nothing other than this License grants you permission to propagate or
430
+ modify any covered work. These actions infringe copyright if you do
431
+ not accept this License. Therefore, by modifying or propagating a
432
+ covered work, you indicate your acceptance of this License to do so.
433
+
434
+ 10. Automatic Licensing of Downstream Recipients.
435
+
436
+ Each time you convey a covered work, the recipient automatically
437
+ receives a license from the original licensors, to run, modify and
438
+ propagate that work, subject to this License. You are not responsible
439
+ for enforcing compliance by third parties with this License.
440
+
441
+ An "entity transaction" is a transaction transferring control of an
442
+ organization, or substantially all assets of one, or subdividing an
443
+ organization, or merging organizations. If propagation of a covered
444
+ work results from an entity transaction, each party to that
445
+ transaction who receives a copy of the work also receives whatever
446
+ licenses to the work the party's predecessor in interest had or could
447
+ give under the previous paragraph, plus a right to possession of the
448
+ Corresponding Source of the work from the predecessor in interest, if
449
+ the predecessor has it or can get it with reasonable efforts.
450
+
451
+ You may not impose any further restrictions on the exercise of the
452
+ rights granted or affirmed under this License. For example, you may
453
+ not impose a license fee, royalty, or other charge for exercise of
454
+ rights granted under this License, and you may not initiate litigation
455
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
456
+ any patent claim is infringed by making, using, selling, offering for
457
+ sale, or importing the Program or any portion of it.
458
+
459
+ 11. Patents.
460
+
461
+ A "contributor" is a copyright holder who authorizes use under this
462
+ License of the Program or a work on which the Program is based. The
463
+ work thus licensed is called the contributor's "contributor version".
464
+
465
+ A contributor's "essential patent claims" are all patent claims
466
+ owned or controlled by the contributor, whether already acquired or
467
+ hereafter acquired, that would be infringed by some manner, permitted
468
+ by this License, of making, using, or selling its contributor version,
469
+ but do not include claims that would be infringed only as a
470
+ consequence of further modification of the contributor version. For
471
+ purposes of this definition, "control" includes the right to grant
472
+ patent sublicenses in a manner consistent with the requirements of
473
+ this License.
474
+
475
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
476
+ patent license under the contributor's essential patent claims, to
477
+ make, use, sell, offer for sale, import and otherwise run, modify and
478
+ propagate the contents of its contributor version.
479
+
480
+ In the following three paragraphs, a "patent license" is any express
481
+ agreement or commitment, however denominated, not to enforce a patent
482
+ (such as an express permission to practice a patent or covenant not to
483
+ sue for patent infringement). To "grant" such a patent license to a
484
+ party means to make such an agreement or commitment not to enforce a
485
+ patent against the party.
486
+
487
+ If you convey a covered work, knowingly relying on a patent license,
488
+ and the Corresponding Source of the work is not available for anyone
489
+ to copy, free of charge and under the terms of this License, through a
490
+ publicly available network server or other readily accessible means,
491
+ then you must either (1) cause the Corresponding Source to be so
492
+ available, or (2) arrange to deprive yourself of the benefit of the
493
+ patent license for this particular work, or (3) arrange, in a manner
494
+ consistent with the requirements of this License, to extend the patent
495
+ license to downstream recipients. "Knowingly relying" means you have
496
+ actual knowledge that, but for the patent license, your conveying the
497
+ covered work in a country, or your recipient's use of the covered work
498
+ in a country, would infringe one or more identifiable patents in that
499
+ country that you have reason to believe are valid.
500
+
501
+ If, pursuant to or in connection with a single transaction or
502
+ arrangement, you convey, or propagate by procuring conveyance of, a
503
+ covered work, and grant a patent license to some of the parties
504
+ receiving the covered work authorizing them to use, propagate, modify
505
+ or convey a specific copy of the covered work, then the patent license
506
+ you grant is automatically extended to all recipients of the covered
507
+ work and works based on it.
508
+
509
+ A patent license is "discriminatory" if it does not include within
510
+ the scope of its coverage, prohibits the exercise of, or is
511
+ conditioned on the non-exercise of one or more of the rights that are
512
+ specifically granted under this License. You may not convey a covered
513
+ work if you are a party to an arrangement with a third party that is
514
+ in the business of distributing software, under which you make payment
515
+ to the third party based on the extent of your activity of conveying
516
+ the work, and under which the third party grants, to any of the
517
+ parties who would receive the covered work from you, a discriminatory
518
+ patent license (a) in connection with copies of the covered work
519
+ conveyed by you (or copies made from those copies), or (b) primarily
520
+ for and in connection with specific products or compilations that
521
+ contain the covered work, unless you entered into that arrangement,
522
+ or that patent license was granted, prior to 28 March 2007.
523
+
524
+ Nothing in this License shall be construed as excluding or limiting
525
+ any implied license or other defenses to infringement that may
526
+ otherwise be available to you under applicable patent law.
527
+
528
+ 12. No Surrender of Others' Freedom.
529
+
530
+ If conditions are imposed on you (whether by court order, agreement or
531
+ otherwise) that contradict the conditions of this License, they do not
532
+ excuse you from the conditions of this License. If you cannot convey a
533
+ covered work so as to satisfy simultaneously your obligations under this
534
+ License and any other pertinent obligations, then as a consequence you may
535
+ not convey it at all. For example, if you agree to terms that obligate you
536
+ to collect a royalty for further conveying from those to whom you convey
537
+ the Program, the only way you could satisfy both those terms and this
538
+ License would be to refrain entirely from conveying the Program.
539
+
540
+ 13. Remote Network Interaction; Use with the GNU General Public License.
541
+
542
+ Notwithstanding any other provision of this License, if you modify the
543
+ Program, your modified version must prominently offer all users
544
+ interacting with it remotely through a computer network (if your version
545
+ supports such interaction) an opportunity to receive the Corresponding
546
+ Source of your version by providing access to the Corresponding Source
547
+ from a network server at no charge, through some standard or customary
548
+ means of facilitating copying of software. This Corresponding Source
549
+ shall include the Corresponding Source for any work covered by version 3
550
+ of the GNU General Public License that is incorporated pursuant to the
551
+ following paragraph.
552
+
553
+ Notwithstanding any other provision of this License, you have
554
+ permission to link or combine any covered work with a work licensed
555
+ under version 3 of the GNU General Public License into a single
556
+ combined work, and to convey the resulting work. The terms of this
557
+ License will continue to apply to the part which is the covered work,
558
+ but the work with which it is combined will remain governed by version
559
+ 3 of the GNU General Public License.
560
+
561
+ 14. Revised Versions of this License.
562
+
563
+ The Free Software Foundation may publish revised and/or new versions of
564
+ the GNU Affero General Public License from time to time. Such new versions
565
+ will be similar in spirit to the present version, but may differ in detail to
566
+ address new problems or concerns.
567
+
568
+ Each version is given a distinguishing version number. If the
569
+ Program specifies that a certain numbered version of the GNU Affero General
570
+ Public License "or any later version" applies to it, you have the
571
+ option of following the terms and conditions either of that numbered
572
+ version or of any later version published by the Free Software
573
+ Foundation. If the Program does not specify a version number of the
574
+ GNU Affero General Public License, you may choose any version ever published
575
+ by the Free Software Foundation.
576
+
577
+ If the Program specifies that a proxy can decide which future
578
+ versions of the GNU Affero General Public License can be used, that proxy's
579
+ public statement of acceptance of a version permanently authorizes you
580
+ to choose that version for the Program.
581
+
582
+ Later license versions may give you additional or different
583
+ permissions. However, no additional obligations are imposed on any
584
+ author or copyright holder as a result of your choosing to follow a
585
+ later version.
586
+
587
+ 15. Disclaimer of Warranty.
588
+
589
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597
+
598
+ 16. Limitation of Liability.
599
+
600
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608
+ SUCH DAMAGES.
609
+
610
+ 17. Interpretation of Sections 15 and 16.
611
+
612
+ If the disclaimer of warranty and limitation of liability provided
613
+ above cannot be given local legal effect according to their terms,
614
+ reviewing courts shall apply local law that most closely approximates
615
+ an absolute waiver of all civil liability in connection with the
616
+ Program, unless a warranty or assumption of liability accompanies a
617
+ copy of the Program in return for a fee.
618
+
619
+ END OF TERMS AND CONDITIONS
620
+
621
+ How to Apply These Terms to Your New Programs
622
+
623
+ If you develop a new program, and you want it to be of the greatest
624
+ possible use to the public, the best way to achieve this is to make it
625
+ free software which everyone can redistribute and change under these terms.
626
+
627
+ To do so, attach the following notices to the program. It is safest
628
+ to attach them to the start of each source file to most effectively
629
+ state the exclusion of warranty; and each file should have at least
630
+ the "copyright" line and a pointer to where the full notice is found.
631
+
632
+ <one line to give the program's name and a brief idea of what it does.>
633
+ Copyright (C) <year> <name of author>
634
+
635
+ This program is free software: you can redistribute it and/or modify
636
+ it under the terms of the GNU Affero General Public License as published
637
+ by the Free Software Foundation, either version 3 of the License, or
638
+ (at your option) any later version.
639
+
640
+ This program is distributed in the hope that it will be useful,
641
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
642
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643
+ GNU Affero General Public License for more details.
644
+
645
+ You should have received a copy of the GNU Affero General Public License
646
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
647
+
648
+ Also add information on how to contact you by electronic and paper mail.
649
+
650
+ If your software can interact with users remotely through a computer
651
+ network, you should also make sure that it provides a way for users to
652
+ get its source. For example, if your program is a web application, its
653
+ interface could display a "Source" link that leads users to an archive
654
+ of the code. There are many ways you could offer source, and different
655
+ solutions will be better for different programs; see section 13 for the
656
+ specific requirements.
657
+
658
+ You should also get your employer (if you work as a programmer) or school,
659
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
660
+ For more information on this, and how to apply and follow the GNU AGPL, see
661
+ <https://www.gnu.org/licenses/>.
app.py ADDED
@@ -0,0 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa: E402
2
+
3
+ import sys, os
4
+ import logging
5
+
6
+ logging.getLogger("numba").setLevel(logging.WARNING)
7
+ logging.getLogger("markdown_it").setLevel(logging.WARNING)
8
+ logging.getLogger("urllib3").setLevel(logging.WARNING)
9
+ logging.getLogger("matplotlib").setLevel(logging.WARNING)
10
+
11
+ logging.basicConfig(
12
+ level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
13
+ )
14
+
15
+ logger = logging.getLogger(__name__)
16
+ import datetime
17
+ import numpy as np
18
+ import torch
19
+ import argparse
20
+ import commons
21
+ import utils
22
+ from models import SynthesizerTrn
23
+ from text.symbols import symbols
24
+ from text import cleaned_text_to_sequence, get_bert
25
+ from text.cleaner import clean_text
26
+ import gradio as gr
27
+ import webbrowser
28
+ import re
29
+
30
+ net_g = None
31
+ BandList = {
32
+ "PoppinParty":["香澄","有咲","たえ","りみ","沙綾"],
33
+ "Afterglow":["蘭","モカ","ひまり","巴","つぐみ"],
34
+ "HelloHappyWorld":["こころ","ミッシェル","薫","花音","はぐみ"],
35
+ "PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"],
36
+ "Roselia":["友希那","紗夜","リサ","燐子","あこ"],
37
+ "RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"],
38
+ "Morfonica":["ましろ","瑠唯","つくし","七深","透子"],
39
+ "MyGo":["燈","愛音","そよ","立希","楽奈"],
40
+ "AveMujica(初华和喵梦没法用)":["祥子","睦","海鈴","初華","にゃむ"],
41
+ }
42
+
43
+ if sys.platform == "darwin" and torch.backends.mps.is_available():
44
+ device = "mps"
45
+ os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
46
+ else:
47
+ device = "cuda"
48
+
49
+ def is_japanese(string):
50
+ for ch in string:
51
+ if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
52
+ return True
53
+ return False
54
+
55
+ def extrac(text):
56
+ text = re.sub("<[^>]*>","",text)
57
+ result_list = re.split(r'\n', text)
58
+ final_list = []
59
+ for i in result_list:
60
+ i = i.replace('\n','').replace(' ','')
61
+ #Current length of single sentence: 20
62
+ if len(i)>1:
63
+ if len(i) > 20:
64
+ try:
65
+ cur_list = re.split(r'。|!', i)
66
+ for i in cur_list:
67
+ if len(i)>1:
68
+ final_list.append(i+'。')
69
+ except:
70
+ pass
71
+ else:
72
+ final_list.append(i)
73
+ '''
74
+ final_list.append(i)
75
+ '''
76
+ final_list = [x for x in final_list if x != '']
77
+ print(final_list)
78
+ return final_list
79
+
80
+ def get_text(text, language_str, hps):
81
+ norm_text, phone, tone, word2ph = clean_text(text, language_str)
82
+ phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
83
+
84
+ if hps.data.add_blank:
85
+ phone = commons.intersperse(phone, 0)
86
+ tone = commons.intersperse(tone, 0)
87
+ language = commons.intersperse(language, 0)
88
+ for i in range(len(word2ph)):
89
+ word2ph[i] = word2ph[i] * 2
90
+ word2ph[0] += 1
91
+ bert = get_bert(norm_text, word2ph, language_str, device)
92
+ del word2ph
93
+ assert bert.shape[-1] == len(phone), phone
94
+
95
+ if language_str == "ZH":
96
+ bert = bert
97
+ ja_bert = torch.zeros(768, len(phone))
98
+ elif language_str == "JA":
99
+ ja_bert = bert
100
+ bert = torch.zeros(1024, len(phone))
101
+ else:
102
+ bert = torch.zeros(1024, len(phone))
103
+ ja_bert = torch.zeros(768, len(phone))
104
+
105
+ assert bert.shape[-1] == len(
106
+ phone
107
+ ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
108
+
109
+ phone = torch.LongTensor(phone)
110
+ tone = torch.LongTensor(tone)
111
+ language = torch.LongTensor(language)
112
+ return bert, ja_bert, phone, tone, language
113
+
114
+
115
+ def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
116
+ global net_g
117
+ bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
118
+ with torch.no_grad():
119
+ x_tst = phones.to(device).unsqueeze(0)
120
+ tones = tones.to(device).unsqueeze(0)
121
+ lang_ids = lang_ids.to(device).unsqueeze(0)
122
+ bert = bert.to(device).unsqueeze(0)
123
+ ja_bert = ja_bert.to(device).unsqueeze(0)
124
+ x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
125
+ del phones
126
+ speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
127
+ audio = (
128
+ net_g.infer(
129
+ x_tst,
130
+ x_tst_lengths,
131
+ speakers,
132
+ tones,
133
+ lang_ids,
134
+ bert,
135
+ ja_bert,
136
+ sdp_ratio=sdp_ratio,
137
+ noise_scale=noise_scale,
138
+ noise_scale_w=noise_scale_w,
139
+ length_scale=length_scale,
140
+ )[0][0, 0]
141
+ .data.cpu()
142
+ .float()
143
+ .numpy()
144
+ )
145
+ del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
146
+ return audio
147
+
148
+
149
+ def tts_fn(
150
+ text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,LongSentence
151
+ ):
152
+ if not LongSentence:
153
+ with torch.no_grad():
154
+ audio = infer(
155
+ text,
156
+ sdp_ratio=sdp_ratio,
157
+ noise_scale=noise_scale,
158
+ noise_scale_w=noise_scale_w,
159
+ length_scale=length_scale,
160
+ sid=speaker,
161
+ language= "JP" if is_japanese(text) else "ZH",
162
+ )
163
+ torch.cuda.empty_cache()
164
+ return (hps.data.sampling_rate, audio)
165
+ else:
166
+ audiopath = 'voice.wav'
167
+ a = ['【','[','(','(']
168
+ b = ['】',']',')',')']
169
+ for i in a:
170
+ text = text.replace(i,'<')
171
+ for i in b:
172
+ text = text.replace(i,'>')
173
+ final_list = extrac(text.replace('“','').replace('”',''))
174
+ audio_fin = []
175
+ for sentence in final_list:
176
+ with torch.no_grad():
177
+ audio = infer(
178
+ sentence,
179
+ sdp_ratio=sdp_ratio,
180
+ noise_scale=noise_scale,
181
+ noise_scale_w=noise_scale_w,
182
+ length_scale=length_scale,
183
+ sid=speaker,
184
+ language= "JP" if is_japanese(text) else "ZH",
185
+ )
186
+ print(sentence)
187
+ audio_fin.append(audio)
188
+ return (hps.data.sampling_rate, np.concatenate(audio_fin))
189
+
190
+
191
+ if __name__ == "__main__":
192
+ parser = argparse.ArgumentParser()
193
+ parser.add_argument(
194
+ "-m", "--model", default="./logs/BangDream/G_6000.pth", help="path of your model"
195
+ )
196
+ parser.add_argument(
197
+ "-c",
198
+ "--config",
199
+ default="./logs/BangDream/config.json",
200
+ help="path of your config file",
201
+ )
202
+ parser.add_argument(
203
+ "--share", default=True, help="make link public", action="store_true"
204
+ )
205
+ parser.add_argument(
206
+ "-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log"
207
+ )
208
+
209
+ args = parser.parse_args()
210
+ if args.debug:
211
+ logger.info("Enable DEBUG-LEVEL log")
212
+ logging.basicConfig(level=logging.DEBUG)
213
+ hps = utils.get_hparams_from_file(args.config)
214
+
215
+ device = (
216
+ "cuda:0"
217
+ if torch.cuda.is_available()
218
+ else (
219
+ "mps"
220
+ if sys.platform == "darwin" and torch.backends.mps.is_available()
221
+ else "cpu"
222
+ )
223
+ )
224
+ net_g = SynthesizerTrn(
225
+ len(symbols),
226
+ hps.data.filter_length // 2 + 1,
227
+ hps.train.segment_size // hps.data.hop_length,
228
+ n_speakers=hps.data.n_speakers,
229
+ **hps.model,
230
+ ).to(device)
231
+ _ = net_g.eval()
232
+
233
+ _ = utils.load_checkpoint(args.model, net_g, None, skip_optimizer=True)
234
+
235
+ speaker_ids = hps.data.spk2id
236
+ speakers = list(speaker_ids.keys())
237
+ languages = ["ZH", "JP"]
238
+ with gr.Blocks() as app:
239
+ for band in BandList:
240
+ with gr.TabItem(band):
241
+ for name in BandList[band]:
242
+ with gr.TabItem(name):
243
+ with gr.Row():
244
+ with gr.Column():
245
+ with gr.Row():
246
+ gr.Markdown(
247
+ '<div align="center">'
248
+ f'<img style="width:auto;height:400px;" src="file/image/{name}.png">'
249
+ '</div>'
250
+ )
251
+ LongSentence = gr.Checkbox(value=True, label="Generate LongSentence")
252
+ with gr.Column():
253
+ text = gr.TextArea(
254
+ label="Text",
255
+ placeholder="Input Text Here",
256
+ value="有个人躺在地上,哀嚎。\n有个人睡着了。\n睡在盒子里。\n我要把它打开。\n看看他的梦,是什么。",
257
+ )
258
+ btn = gr.Button("Generate!", variant="primary")
259
+ audio_output = gr.Audio(label="Output Audio")
260
+ with gr.Accordion(label="Setting", open=False):
261
+ sdp_ratio = gr.Slider(
262
+ minimum=0, maximum=1, value=0.2, step=0.01, label="SDP Ratio"
263
+ )
264
+ noise_scale = gr.Slider(
265
+ minimum=0.1, maximum=2, value=0.6, step=0.01, label="Noise Scale"
266
+ )
267
+ noise_scale_w = gr.Slider(
268
+ minimum=0.1, maximum=2, value=0.8, step=0.01, label="Noise Scale W"
269
+ )
270
+ length_scale = gr.Slider(
271
+ minimum=0.1, maximum=2, value=1, step=0.01, label="Length Scale"
272
+ )
273
+ speaker = gr.Dropdown(
274
+ choices=speakers, value=name, label="Speaker"
275
+ )
276
+ btn.click(
277
+ tts_fn,
278
+ inputs=[
279
+ text,
280
+ speaker,
281
+ sdp_ratio,
282
+ noise_scale,
283
+ noise_scale_w,
284
+ length_scale,
285
+ LongSentence,
286
+ ],
287
+ outputs=[ audio_output],
288
+ )
289
+
290
+ app.launch()
attentions.py ADDED
@@ -0,0 +1,464 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from torch.nn import functional as F
5
+
6
+ import commons
7
+ import logging
8
+
9
+ logger = logging.getLogger(__name__)
10
+
11
+
12
+ class LayerNorm(nn.Module):
13
+ def __init__(self, channels, eps=1e-5):
14
+ super().__init__()
15
+ self.channels = channels
16
+ self.eps = eps
17
+
18
+ self.gamma = nn.Parameter(torch.ones(channels))
19
+ self.beta = nn.Parameter(torch.zeros(channels))
20
+
21
+ def forward(self, x):
22
+ x = x.transpose(1, -1)
23
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
24
+ return x.transpose(1, -1)
25
+
26
+
27
+ @torch.jit.script
28
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
29
+ n_channels_int = n_channels[0]
30
+ in_act = input_a + input_b
31
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
32
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
33
+ acts = t_act * s_act
34
+ return acts
35
+
36
+
37
+ class Encoder(nn.Module):
38
+ def __init__(
39
+ self,
40
+ hidden_channels,
41
+ filter_channels,
42
+ n_heads,
43
+ n_layers,
44
+ kernel_size=1,
45
+ p_dropout=0.0,
46
+ window_size=4,
47
+ isflow=True,
48
+ **kwargs
49
+ ):
50
+ super().__init__()
51
+ self.hidden_channels = hidden_channels
52
+ self.filter_channels = filter_channels
53
+ self.n_heads = n_heads
54
+ self.n_layers = n_layers
55
+ self.kernel_size = kernel_size
56
+ self.p_dropout = p_dropout
57
+ self.window_size = window_size
58
+ # if isflow:
59
+ # cond_layer = torch.nn.Conv1d(256, 2*hidden_channels*n_layers, 1)
60
+ # self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1)
61
+ # self.cond_layer = weight_norm(cond_layer, name='weight')
62
+ # self.gin_channels = 256
63
+ self.cond_layer_idx = self.n_layers
64
+ if "gin_channels" in kwargs:
65
+ self.gin_channels = kwargs["gin_channels"]
66
+ if self.gin_channels != 0:
67
+ self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels)
68
+ # vits2 says 3rd block, so idx is 2 by default
69
+ self.cond_layer_idx = (
70
+ kwargs["cond_layer_idx"] if "cond_layer_idx" in kwargs else 2
71
+ )
72
+ logging.debug(self.gin_channels, self.cond_layer_idx)
73
+ assert (
74
+ self.cond_layer_idx < self.n_layers
75
+ ), "cond_layer_idx should be less than n_layers"
76
+ self.drop = nn.Dropout(p_dropout)
77
+ self.attn_layers = nn.ModuleList()
78
+ self.norm_layers_1 = nn.ModuleList()
79
+ self.ffn_layers = nn.ModuleList()
80
+ self.norm_layers_2 = nn.ModuleList()
81
+ for i in range(self.n_layers):
82
+ self.attn_layers.append(
83
+ MultiHeadAttention(
84
+ hidden_channels,
85
+ hidden_channels,
86
+ n_heads,
87
+ p_dropout=p_dropout,
88
+ window_size=window_size,
89
+ )
90
+ )
91
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
92
+ self.ffn_layers.append(
93
+ FFN(
94
+ hidden_channels,
95
+ hidden_channels,
96
+ filter_channels,
97
+ kernel_size,
98
+ p_dropout=p_dropout,
99
+ )
100
+ )
101
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
102
+
103
+ def forward(self, x, x_mask, g=None):
104
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
105
+ x = x * x_mask
106
+ for i in range(self.n_layers):
107
+ if i == self.cond_layer_idx and g is not None:
108
+ g = self.spk_emb_linear(g.transpose(1, 2))
109
+ g = g.transpose(1, 2)
110
+ x = x + g
111
+ x = x * x_mask
112
+ y = self.attn_layers[i](x, x, attn_mask)
113
+ y = self.drop(y)
114
+ x = self.norm_layers_1[i](x + y)
115
+
116
+ y = self.ffn_layers[i](x, x_mask)
117
+ y = self.drop(y)
118
+ x = self.norm_layers_2[i](x + y)
119
+ x = x * x_mask
120
+ return x
121
+
122
+
123
+ class Decoder(nn.Module):
124
+ def __init__(
125
+ self,
126
+ hidden_channels,
127
+ filter_channels,
128
+ n_heads,
129
+ n_layers,
130
+ kernel_size=1,
131
+ p_dropout=0.0,
132
+ proximal_bias=False,
133
+ proximal_init=True,
134
+ **kwargs
135
+ ):
136
+ super().__init__()
137
+ self.hidden_channels = hidden_channels
138
+ self.filter_channels = filter_channels
139
+ self.n_heads = n_heads
140
+ self.n_layers = n_layers
141
+ self.kernel_size = kernel_size
142
+ self.p_dropout = p_dropout
143
+ self.proximal_bias = proximal_bias
144
+ self.proximal_init = proximal_init
145
+
146
+ self.drop = nn.Dropout(p_dropout)
147
+ self.self_attn_layers = nn.ModuleList()
148
+ self.norm_layers_0 = nn.ModuleList()
149
+ self.encdec_attn_layers = nn.ModuleList()
150
+ self.norm_layers_1 = nn.ModuleList()
151
+ self.ffn_layers = nn.ModuleList()
152
+ self.norm_layers_2 = nn.ModuleList()
153
+ for i in range(self.n_layers):
154
+ self.self_attn_layers.append(
155
+ MultiHeadAttention(
156
+ hidden_channels,
157
+ hidden_channels,
158
+ n_heads,
159
+ p_dropout=p_dropout,
160
+ proximal_bias=proximal_bias,
161
+ proximal_init=proximal_init,
162
+ )
163
+ )
164
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
165
+ self.encdec_attn_layers.append(
166
+ MultiHeadAttention(
167
+ hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
168
+ )
169
+ )
170
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
171
+ self.ffn_layers.append(
172
+ FFN(
173
+ hidden_channels,
174
+ hidden_channels,
175
+ filter_channels,
176
+ kernel_size,
177
+ p_dropout=p_dropout,
178
+ causal=True,
179
+ )
180
+ )
181
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
182
+
183
+ def forward(self, x, x_mask, h, h_mask):
184
+ """
185
+ x: decoder input
186
+ h: encoder output
187
+ """
188
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
189
+ device=x.device, dtype=x.dtype
190
+ )
191
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
192
+ x = x * x_mask
193
+ for i in range(self.n_layers):
194
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
195
+ y = self.drop(y)
196
+ x = self.norm_layers_0[i](x + y)
197
+
198
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
199
+ y = self.drop(y)
200
+ x = self.norm_layers_1[i](x + y)
201
+
202
+ y = self.ffn_layers[i](x, x_mask)
203
+ y = self.drop(y)
204
+ x = self.norm_layers_2[i](x + y)
205
+ x = x * x_mask
206
+ return x
207
+
208
+
209
+ class MultiHeadAttention(nn.Module):
210
+ def __init__(
211
+ self,
212
+ channels,
213
+ out_channels,
214
+ n_heads,
215
+ p_dropout=0.0,
216
+ window_size=None,
217
+ heads_share=True,
218
+ block_length=None,
219
+ proximal_bias=False,
220
+ proximal_init=False,
221
+ ):
222
+ super().__init__()
223
+ assert channels % n_heads == 0
224
+
225
+ self.channels = channels
226
+ self.out_channels = out_channels
227
+ self.n_heads = n_heads
228
+ self.p_dropout = p_dropout
229
+ self.window_size = window_size
230
+ self.heads_share = heads_share
231
+ self.block_length = block_length
232
+ self.proximal_bias = proximal_bias
233
+ self.proximal_init = proximal_init
234
+ self.attn = None
235
+
236
+ self.k_channels = channels // n_heads
237
+ self.conv_q = nn.Conv1d(channels, channels, 1)
238
+ self.conv_k = nn.Conv1d(channels, channels, 1)
239
+ self.conv_v = nn.Conv1d(channels, channels, 1)
240
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
241
+ self.drop = nn.Dropout(p_dropout)
242
+
243
+ if window_size is not None:
244
+ n_heads_rel = 1 if heads_share else n_heads
245
+ rel_stddev = self.k_channels**-0.5
246
+ self.emb_rel_k = nn.Parameter(
247
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
248
+ * rel_stddev
249
+ )
250
+ self.emb_rel_v = nn.Parameter(
251
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
252
+ * rel_stddev
253
+ )
254
+
255
+ nn.init.xavier_uniform_(self.conv_q.weight)
256
+ nn.init.xavier_uniform_(self.conv_k.weight)
257
+ nn.init.xavier_uniform_(self.conv_v.weight)
258
+ if proximal_init:
259
+ with torch.no_grad():
260
+ self.conv_k.weight.copy_(self.conv_q.weight)
261
+ self.conv_k.bias.copy_(self.conv_q.bias)
262
+
263
+ def forward(self, x, c, attn_mask=None):
264
+ q = self.conv_q(x)
265
+ k = self.conv_k(c)
266
+ v = self.conv_v(c)
267
+
268
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
269
+
270
+ x = self.conv_o(x)
271
+ return x
272
+
273
+ def attention(self, query, key, value, mask=None):
274
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
275
+ b, d, t_s, t_t = (*key.size(), query.size(2))
276
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
277
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
278
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
279
+
280
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
281
+ if self.window_size is not None:
282
+ assert (
283
+ t_s == t_t
284
+ ), "Relative attention is only available for self-attention."
285
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
286
+ rel_logits = self._matmul_with_relative_keys(
287
+ query / math.sqrt(self.k_channels), key_relative_embeddings
288
+ )
289
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
290
+ scores = scores + scores_local
291
+ if self.proximal_bias:
292
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
293
+ scores = scores + self._attention_bias_proximal(t_s).to(
294
+ device=scores.device, dtype=scores.dtype
295
+ )
296
+ if mask is not None:
297
+ scores = scores.masked_fill(mask == 0, -1e4)
298
+ if self.block_length is not None:
299
+ assert (
300
+ t_s == t_t
301
+ ), "Local attention is only available for self-attention."
302
+ block_mask = (
303
+ torch.ones_like(scores)
304
+ .triu(-self.block_length)
305
+ .tril(self.block_length)
306
+ )
307
+ scores = scores.masked_fill(block_mask == 0, -1e4)
308
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
309
+ p_attn = self.drop(p_attn)
310
+ output = torch.matmul(p_attn, value)
311
+ if self.window_size is not None:
312
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
313
+ value_relative_embeddings = self._get_relative_embeddings(
314
+ self.emb_rel_v, t_s
315
+ )
316
+ output = output + self._matmul_with_relative_values(
317
+ relative_weights, value_relative_embeddings
318
+ )
319
+ output = (
320
+ output.transpose(2, 3).contiguous().view(b, d, t_t)
321
+ ) # [b, n_h, t_t, d_k] -> [b, d, t_t]
322
+ return output, p_attn
323
+
324
+ def _matmul_with_relative_values(self, x, y):
325
+ """
326
+ x: [b, h, l, m]
327
+ y: [h or 1, m, d]
328
+ ret: [b, h, l, d]
329
+ """
330
+ ret = torch.matmul(x, y.unsqueeze(0))
331
+ return ret
332
+
333
+ def _matmul_with_relative_keys(self, x, y):
334
+ """
335
+ x: [b, h, l, d]
336
+ y: [h or 1, m, d]
337
+ ret: [b, h, l, m]
338
+ """
339
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
340
+ return ret
341
+
342
+ def _get_relative_embeddings(self, relative_embeddings, length):
343
+ 2 * self.window_size + 1
344
+ # Pad first before slice to avoid using cond ops.
345
+ pad_length = max(length - (self.window_size + 1), 0)
346
+ slice_start_position = max((self.window_size + 1) - length, 0)
347
+ slice_end_position = slice_start_position + 2 * length - 1
348
+ if pad_length > 0:
349
+ padded_relative_embeddings = F.pad(
350
+ relative_embeddings,
351
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
352
+ )
353
+ else:
354
+ padded_relative_embeddings = relative_embeddings
355
+ used_relative_embeddings = padded_relative_embeddings[
356
+ :, slice_start_position:slice_end_position
357
+ ]
358
+ return used_relative_embeddings
359
+
360
+ def _relative_position_to_absolute_position(self, x):
361
+ """
362
+ x: [b, h, l, 2*l-1]
363
+ ret: [b, h, l, l]
364
+ """
365
+ batch, heads, length, _ = x.size()
366
+ # Concat columns of pad to shift from relative to absolute indexing.
367
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
368
+
369
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
370
+ x_flat = x.view([batch, heads, length * 2 * length])
371
+ x_flat = F.pad(
372
+ x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
373
+ )
374
+
375
+ # Reshape and slice out the padded elements.
376
+ x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
377
+ :, :, :length, length - 1 :
378
+ ]
379
+ return x_final
380
+
381
+ def _absolute_position_to_relative_position(self, x):
382
+ """
383
+ x: [b, h, l, l]
384
+ ret: [b, h, l, 2*l-1]
385
+ """
386
+ batch, heads, length, _ = x.size()
387
+ # pad along column
388
+ x = F.pad(
389
+ x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
390
+ )
391
+ x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
392
+ # add 0's in the beginning that will skew the elements after reshape
393
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
394
+ x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
395
+ return x_final
396
+
397
+ def _attention_bias_proximal(self, length):
398
+ """Bias for self-attention to encourage attention to close positions.
399
+ Args:
400
+ length: an integer scalar.
401
+ Returns:
402
+ a Tensor with shape [1, 1, length, length]
403
+ """
404
+ r = torch.arange(length, dtype=torch.float32)
405
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
406
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
407
+
408
+
409
+ class FFN(nn.Module):
410
+ def __init__(
411
+ self,
412
+ in_channels,
413
+ out_channels,
414
+ filter_channels,
415
+ kernel_size,
416
+ p_dropout=0.0,
417
+ activation=None,
418
+ causal=False,
419
+ ):
420
+ super().__init__()
421
+ self.in_channels = in_channels
422
+ self.out_channels = out_channels
423
+ self.filter_channels = filter_channels
424
+ self.kernel_size = kernel_size
425
+ self.p_dropout = p_dropout
426
+ self.activation = activation
427
+ self.causal = causal
428
+
429
+ if causal:
430
+ self.padding = self._causal_padding
431
+ else:
432
+ self.padding = self._same_padding
433
+
434
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
435
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
436
+ self.drop = nn.Dropout(p_dropout)
437
+
438
+ def forward(self, x, x_mask):
439
+ x = self.conv_1(self.padding(x * x_mask))
440
+ if self.activation == "gelu":
441
+ x = x * torch.sigmoid(1.702 * x)
442
+ else:
443
+ x = torch.relu(x)
444
+ x = self.drop(x)
445
+ x = self.conv_2(self.padding(x * x_mask))
446
+ return x * x_mask
447
+
448
+ def _causal_padding(self, x):
449
+ if self.kernel_size == 1:
450
+ return x
451
+ pad_l = self.kernel_size - 1
452
+ pad_r = 0
453
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
454
+ x = F.pad(x, commons.convert_pad_shape(padding))
455
+ return x
456
+
457
+ def _same_padding(self, x):
458
+ if self.kernel_size == 1:
459
+ return x
460
+ pad_l = (self.kernel_size - 1) // 2
461
+ pad_r = self.kernel_size // 2
462
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
463
+ x = F.pad(x, commons.convert_pad_shape(padding))
464
+ return x
bert/bert-base-japanese-v3/.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
bert/bert-base-japanese-v3/README.md ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - cc100
5
+ - wikipedia
6
+ language:
7
+ - ja
8
+ widget:
9
+ - text: 東北大学で[MASK]の研究をしています。
10
+ ---
11
+
12
+ # BERT base Japanese (unidic-lite with whole word masking, CC-100 and jawiki-20230102)
13
+
14
+ This is a [BERT](https://github.com/google-research/bert) model pretrained on texts in the Japanese language.
15
+
16
+ This version of the model processes input texts with word-level tokenization based on the Unidic 2.1.2 dictionary (available in [unidic-lite](https://pypi.org/project/unidic-lite/) package), followed by the WordPiece subword tokenization.
17
+ Additionally, the model is trained with the whole word masking enabled for the masked language modeling (MLM) objective.
18
+
19
+ The codes for the pretraining are available at [cl-tohoku/bert-japanese](https://github.com/cl-tohoku/bert-japanese/).
20
+
21
+ ## Model architecture
22
+
23
+ The model architecture is the same as the original BERT base model; 12 layers, 768 dimensions of hidden states, and 12 attention heads.
24
+
25
+ ## Training Data
26
+
27
+ The model is trained on the Japanese portion of [CC-100 dataset](https://data.statmt.org/cc-100/) and the Japanese version of Wikipedia.
28
+ For Wikipedia, we generated a text corpus from the [Wikipedia Cirrussearch dump file](https://dumps.wikimedia.org/other/cirrussearch/) as of January 2, 2023.
29
+ The corpus files generated from CC-100 and Wikipedia are 74.3GB and 4.9GB in size and consist of approximately 392M and 34M sentences, respectively.
30
+
31
+ For the purpose of splitting texts into sentences, we used [fugashi](https://github.com/polm/fugashi) with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd) dictionary (v0.0.7).
32
+
33
+ ## Tokenization
34
+
35
+ The texts are first tokenized by MeCab with the Unidic 2.1.2 dictionary and then split into subwords by the WordPiece algorithm.
36
+ The vocabulary size is 32768.
37
+
38
+ We used [fugashi](https://github.com/polm/fugashi) and [unidic-lite](https://github.com/polm/unidic-lite) packages for the tokenization.
39
+
40
+ ## Training
41
+
42
+ We trained the model first on the CC-100 corpus for 1M steps and then on the Wikipedia corpus for another 1M steps.
43
+ For training of the MLM (masked language modeling) objective, we introduced whole word masking in which all of the subword tokens corresponding to a single word (tokenized by MeCab) are masked at once.
44
+
45
+ For training of each model, we used a v3-8 instance of Cloud TPUs provided by [TPU Research Cloud](https://sites.research.google/trc/about/).
46
+
47
+ ## Licenses
48
+
49
+ The pretrained models are distributed under the Apache License 2.0.
50
+
51
+ ## Acknowledgments
52
+
53
+ This model is trained with Cloud TPUs provided by [TPU Research Cloud](https://sites.research.google/trc/about/) program.
bert/bert-base-japanese-v3/config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForPreTraining"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "hidden_act": "gelu",
7
+ "hidden_dropout_prob": 0.1,
8
+ "hidden_size": 768,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 3072,
11
+ "layer_norm_eps": 1e-12,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "bert",
14
+ "num_attention_heads": 12,
15
+ "num_hidden_layers": 12,
16
+ "pad_token_id": 0,
17
+ "type_vocab_size": 2,
18
+ "vocab_size": 32768
19
+ }
bert/bert-base-japanese-v3/flax_model.msgpack ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7dce0b8b350432362a184b9f8bb90ffb0f2ff0c394ab43b915e318926f4e7569
3
+ size 447341816
bert/bert-base-japanese-v3/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e172862e0674054d65e0ba40d67df2a4687982f589db44aa27091c386e5450a4
3
+ size 447406217
bert/bert-base-japanese-v3/tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71920d0dc0174d0a0ce32b934fe65f15320b2d53aa7e671718b33065748cb712
3
+ size 549871840
bert/bert-base-japanese-v3/tokenizer_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "tokenizer_class": "BertJapaneseTokenizer",
3
+ "model_max_length": 512,
4
+ "do_lower_case": false,
5
+ "word_tokenizer_type": "mecab",
6
+ "subword_tokenizer_type": "wordpiece",
7
+ "mecab_kwargs": {
8
+ "mecab_dic": "unidic_lite"
9
+ }
10
+ }
bert/bert-base-japanese-v3/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
bert/chinese-roberta-wwm-ext-large/.gitattributes ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
2
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.h5 filter=lfs diff=lfs merge=lfs -text
5
+ *.tflite filter=lfs diff=lfs merge=lfs -text
6
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.ot filter=lfs diff=lfs merge=lfs -text
8
+ *.onnx filter=lfs diff=lfs merge=lfs -text
9
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
bert/chinese-roberta-wwm-ext-large/README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - zh
4
+ tags:
5
+ - bert
6
+ license: "apache-2.0"
7
+ ---
8
+
9
+ # Please use 'Bert' related functions to load this model!
10
+
11
+ ## Chinese BERT with Whole Word Masking
12
+ For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**.
13
+
14
+ **[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)**
15
+ Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu
16
+
17
+ This repository is developed based on:https://github.com/google-research/bert
18
+
19
+ You may also interested in,
20
+ - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm
21
+ - Chinese MacBERT: https://github.com/ymcui/MacBERT
22
+ - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA
23
+ - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet
24
+ - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer
25
+
26
+ More resources by HFL: https://github.com/ymcui/HFL-Anthology
27
+
28
+ ## Citation
29
+ If you find the technical report or resource is useful, please cite the following technical report in your paper.
30
+ - Primary: https://arxiv.org/abs/2004.13922
31
+ ```
32
+ @inproceedings{cui-etal-2020-revisiting,
33
+ title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing",
34
+ author = "Cui, Yiming and
35
+ Che, Wanxiang and
36
+ Liu, Ting and
37
+ Qin, Bing and
38
+ Wang, Shijin and
39
+ Hu, Guoping",
40
+ booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
41
+ month = nov,
42
+ year = "2020",
43
+ address = "Online",
44
+ publisher = "Association for Computational Linguistics",
45
+ url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58",
46
+ pages = "657--668",
47
+ }
48
+ ```
49
+ - Secondary: https://arxiv.org/abs/1906.08101
50
+ ```
51
+ @article{chinese-bert-wwm,
52
+ title={Pre-Training with Whole Word Masking for Chinese BERT},
53
+ author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},
54
+ journal={arXiv preprint arXiv:1906.08101},
55
+ year={2019}
56
+ }
57
+ ```
bert/chinese-roberta-wwm-ext-large/added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
bert/chinese-roberta-wwm-ext-large/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "directionality": "bidi",
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "output_past": true,
20
+ "pad_token_id": 0,
21
+ "pooler_fc_size": 768,
22
+ "pooler_num_attention_heads": 12,
23
+ "pooler_num_fc_layers": 3,
24
+ "pooler_size_per_head": 128,
25
+ "pooler_type": "first_token_transform",
26
+ "type_vocab_size": 2,
27
+ "vocab_size": 21128
28
+ }
bert/chinese-roberta-wwm-ext-large/flax_model.msgpack ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a46a510fe646213c728b80c9d0d5691d05235523d67f9ac3c3ce4e67deabf926
3
+ size 1302196529
bert/chinese-roberta-wwm-ext-large/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ac62d49144d770c5ca9a5d1d3039c4995665a080febe63198189857c6bd11cd
3
+ size 1306484351
bert/chinese-roberta-wwm-ext-large/special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
bert/chinese-roberta-wwm-ext-large/tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72d18616fb285b720cb869c25aa9f4d7371033dfd5d8ba82aca448fdd28132bf
3
+ size 1302594480
bert/chinese-roberta-wwm-ext-large/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
bert/chinese-roberta-wwm-ext-large/tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"init_inputs": []}
bert/chinese-roberta-wwm-ext-large/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
bert_gen.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from multiprocessing import Pool
3
+ import commons
4
+ import utils
5
+ from tqdm import tqdm
6
+ from text import cleaned_text_to_sequence, get_bert
7
+ import argparse
8
+ import torch.multiprocessing as mp
9
+
10
+
11
+ def process_line(line):
12
+ rank = mp.current_process()._identity
13
+ rank = rank[0] if len(rank) > 0 else 0
14
+ if torch.cuda.is_available():
15
+ gpu_id = rank % torch.cuda.device_count()
16
+ device = torch.device(f"cuda:{gpu_id}")
17
+ wav_path, _, language_str, text, phones, tone, word2ph = line.strip().split("|")
18
+ phone = phones.split(" ")
19
+ tone = [int(i) for i in tone.split(" ")]
20
+ word2ph = [int(i) for i in word2ph.split(" ")]
21
+ word2ph = [i for i in word2ph]
22
+ phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
23
+
24
+ if hps.data.add_blank:
25
+ phone = commons.intersperse(phone, 0)
26
+ tone = commons.intersperse(tone, 0)
27
+ language = commons.intersperse(language, 0)
28
+ for i in range(len(word2ph)):
29
+ word2ph[i] = word2ph[i] * 2
30
+ word2ph[0] += 1
31
+
32
+ bert_path = wav_path.replace(".wav", ".bert.pt")
33
+
34
+ try:
35
+ bert = torch.load(bert_path)
36
+ assert bert.shape[-1] == len(phone)
37
+ except Exception:
38
+ bert = get_bert(text, word2ph, language_str, device)
39
+ assert bert.shape[-1] == len(phone)
40
+ torch.save(bert, bert_path)
41
+
42
+
43
+ if __name__ == "__main__":
44
+ parser = argparse.ArgumentParser()
45
+ parser.add_argument("-c", "--config", type=str, default="configs/config.json")
46
+ parser.add_argument("--num_processes", type=int, default=2)
47
+ args = parser.parse_args()
48
+ config_path = args.config
49
+ hps = utils.get_hparams_from_file(config_path)
50
+ lines = []
51
+ with open(hps.data.training_files, encoding="utf-8") as f:
52
+ lines.extend(f.readlines())
53
+
54
+ with open(hps.data.validation_files, encoding="utf-8") as f:
55
+ lines.extend(f.readlines())
56
+
57
+ num_processes = args.num_processes
58
+ with Pool(processes=num_processes) as pool:
59
+ for _ in tqdm(pool.imap_unordered(process_line, lines), total=len(lines)):
60
+ pass
commons.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch.nn import functional as F
4
+
5
+
6
+ def init_weights(m, mean=0.0, std=0.01):
7
+ classname = m.__class__.__name__
8
+ if classname.find("Conv") != -1:
9
+ m.weight.data.normal_(mean, std)
10
+
11
+
12
+ def get_padding(kernel_size, dilation=1):
13
+ return int((kernel_size * dilation - dilation) / 2)
14
+
15
+
16
+ def convert_pad_shape(pad_shape):
17
+ layer = pad_shape[::-1]
18
+ pad_shape = [item for sublist in layer for item in sublist]
19
+ return pad_shape
20
+
21
+
22
+ def intersperse(lst, item):
23
+ result = [item] * (len(lst) * 2 + 1)
24
+ result[1::2] = lst
25
+ return result
26
+
27
+
28
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
29
+ """KL(P||Q)"""
30
+ kl = (logs_q - logs_p) - 0.5
31
+ kl += (
32
+ 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
33
+ )
34
+ return kl
35
+
36
+
37
+ def rand_gumbel(shape):
38
+ """Sample from the Gumbel distribution, protect from overflows."""
39
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
40
+ return -torch.log(-torch.log(uniform_samples))
41
+
42
+
43
+ def rand_gumbel_like(x):
44
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
45
+ return g
46
+
47
+
48
+ def slice_segments(x, ids_str, segment_size=4):
49
+ ret = torch.zeros_like(x[:, :, :segment_size])
50
+ for i in range(x.size(0)):
51
+ idx_str = ids_str[i]
52
+ idx_end = idx_str + segment_size
53
+ ret[i] = x[i, :, idx_str:idx_end]
54
+ return ret
55
+
56
+
57
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
58
+ b, d, t = x.size()
59
+ if x_lengths is None:
60
+ x_lengths = t
61
+ ids_str_max = x_lengths - segment_size + 1
62
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
63
+ ret = slice_segments(x, ids_str, segment_size)
64
+ return ret, ids_str
65
+
66
+
67
+ def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
68
+ position = torch.arange(length, dtype=torch.float)
69
+ num_timescales = channels // 2
70
+ log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
71
+ num_timescales - 1
72
+ )
73
+ inv_timescales = min_timescale * torch.exp(
74
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
75
+ )
76
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
77
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
78
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
79
+ signal = signal.view(1, channels, length)
80
+ return signal
81
+
82
+
83
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
84
+ b, channels, length = x.size()
85
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
86
+ return x + signal.to(dtype=x.dtype, device=x.device)
87
+
88
+
89
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
90
+ b, channels, length = x.size()
91
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
92
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
93
+
94
+
95
+ def subsequent_mask(length):
96
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
97
+ return mask
98
+
99
+
100
+ @torch.jit.script
101
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
102
+ n_channels_int = n_channels[0]
103
+ in_act = input_a + input_b
104
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
105
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
106
+ acts = t_act * s_act
107
+ return acts
108
+
109
+
110
+ def convert_pad_shape(pad_shape):
111
+ layer = pad_shape[::-1]
112
+ pad_shape = [item for sublist in layer for item in sublist]
113
+ return pad_shape
114
+
115
+
116
+ def shift_1d(x):
117
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
118
+ return x
119
+
120
+
121
+ def sequence_mask(length, max_length=None):
122
+ if max_length is None:
123
+ max_length = length.max()
124
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
125
+ return x.unsqueeze(0) < length.unsqueeze(1)
126
+
127
+
128
+ def generate_path(duration, mask):
129
+ """
130
+ duration: [b, 1, t_x]
131
+ mask: [b, 1, t_y, t_x]
132
+ """
133
+
134
+ b, _, t_y, t_x = mask.shape
135
+ cum_duration = torch.cumsum(duration, -1)
136
+
137
+ cum_duration_flat = cum_duration.view(b * t_x)
138
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
139
+ path = path.view(b, t_x, t_y)
140
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
141
+ path = path.unsqueeze(1).transpose(2, 3) * mask
142
+ return path
143
+
144
+
145
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
146
+ if isinstance(parameters, torch.Tensor):
147
+ parameters = [parameters]
148
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
149
+ norm_type = float(norm_type)
150
+ if clip_value is not None:
151
+ clip_value = float(clip_value)
152
+
153
+ total_norm = 0
154
+ for p in parameters:
155
+ param_norm = p.grad.data.norm(norm_type)
156
+ total_norm += param_norm.item() ** norm_type
157
+ if clip_value is not None:
158
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
159
+ total_norm = total_norm ** (1.0 / norm_type)
160
+ return total_norm
configs/config.json ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 1000,
5
+ "seed": 52,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.0003,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 24,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 16384,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "skip_optimizer": true
22
+ },
23
+ "data": {
24
+ "training_files": "filelists/train.list",
25
+ "validation_files": "filelists/val.list",
26
+ "max_wav_value": 32768.0,
27
+ "sampling_rate": 44100,
28
+ "filter_length": 2048,
29
+ "hop_length": 512,
30
+ "win_length": 2048,
31
+ "n_mel_channels": 128,
32
+ "mel_fmin": 0.0,
33
+ "mel_fmax": null,
34
+ "add_blank": true,
35
+ "n_speakers": 256,
36
+ "cleaned_text": true,
37
+ "spk2id": {
38
+ "燈": 0,
39
+ "そよ": 1,
40
+ "祥子": 2,
41
+ "立希": 3,
42
+ "睦": 4,
43
+ "愛音": 5,
44
+ "神秘人": 6,
45
+ "香澄": 7,
46
+ "沙綾": 8,
47
+ "楽奈": 9,
48
+ "一同": 10,
49
+ "海鈴": 11,
50
+ "にゃむ": 12,
51
+ "モカ": 13,
52
+ "蘭": 14,
53
+ "りみ": 15,
54
+ "有咲": 16,
55
+ "凛々子": 17,
56
+ "初華": 18,
57
+ "ひまり": 19,
58
+ "つぐみ": 20,
59
+ "巴": 21,
60
+ "ロック": 22,
61
+ "あこ": 23,
62
+ "オーナー": 24
63
+ }
64
+ },
65
+ "model": {
66
+ "use_spk_conditioned_encoder": true,
67
+ "use_noise_scaled_mas": true,
68
+ "use_mel_posterior_encoder": false,
69
+ "use_duration_discriminator": true,
70
+ "inter_channels": 192,
71
+ "hidden_channels": 192,
72
+ "filter_channels": 768,
73
+ "n_heads": 2,
74
+ "n_layers": 6,
75
+ "kernel_size": 3,
76
+ "p_dropout": 0.1,
77
+ "resblock": "1",
78
+ "resblock_kernel_sizes": [
79
+ 3,
80
+ 7,
81
+ 11
82
+ ],
83
+ "resblock_dilation_sizes": [
84
+ [
85
+ 1,
86
+ 3,
87
+ 5
88
+ ],
89
+ [
90
+ 1,
91
+ 3,
92
+ 5
93
+ ],
94
+ [
95
+ 1,
96
+ 3,
97
+ 5
98
+ ]
99
+ ],
100
+ "upsample_rates": [
101
+ 8,
102
+ 8,
103
+ 2,
104
+ 2,
105
+ 2
106
+ ],
107
+ "upsample_initial_channel": 512,
108
+ "upsample_kernel_sizes": [
109
+ 16,
110
+ 16,
111
+ 8,
112
+ 2,
113
+ 2
114
+ ],
115
+ "n_layers_q": 3,
116
+ "use_spectral_norm": false,
117
+ "gin_channels": 256
118
+ }
119
+ }
data_utils.py ADDED
@@ -0,0 +1,406 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import random
3
+ import torch
4
+ import torch.utils.data
5
+ from tqdm import tqdm
6
+ from loguru import logger
7
+ import commons
8
+ from mel_processing import spectrogram_torch, mel_spectrogram_torch
9
+ from utils import load_wav_to_torch, load_filepaths_and_text
10
+ from text import cleaned_text_to_sequence, get_bert
11
+
12
+ """Multi speaker version"""
13
+
14
+
15
+ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
16
+ """
17
+ 1) loads audio, speaker_id, text pairs
18
+ 2) normalizes text and converts them to sequences of integers
19
+ 3) computes spectrograms from audio files.
20
+ """
21
+
22
+ def __init__(self, audiopaths_sid_text, hparams):
23
+ self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
24
+ self.max_wav_value = hparams.max_wav_value
25
+ self.sampling_rate = hparams.sampling_rate
26
+ self.filter_length = hparams.filter_length
27
+ self.hop_length = hparams.hop_length
28
+ self.win_length = hparams.win_length
29
+ self.sampling_rate = hparams.sampling_rate
30
+ self.spk_map = hparams.spk2id
31
+ self.hparams = hparams
32
+
33
+ self.use_mel_spec_posterior = getattr(
34
+ hparams, "use_mel_posterior_encoder", False
35
+ )
36
+ if self.use_mel_spec_posterior:
37
+ self.n_mel_channels = getattr(hparams, "n_mel_channels", 80)
38
+
39
+ self.cleaned_text = getattr(hparams, "cleaned_text", False)
40
+
41
+ self.add_blank = hparams.add_blank
42
+ self.min_text_len = getattr(hparams, "min_text_len", 1)
43
+ self.max_text_len = getattr(hparams, "max_text_len", 300)
44
+
45
+ random.seed(1234)
46
+ random.shuffle(self.audiopaths_sid_text)
47
+ self._filter()
48
+
49
+ def _filter(self):
50
+ """
51
+ Filter text & store spec lengths
52
+ """
53
+ # Store spectrogram lengths for Bucketing
54
+ # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
55
+ # spec_length = wav_length // hop_length
56
+
57
+ audiopaths_sid_text_new = []
58
+ lengths = []
59
+ skipped = 0
60
+ logger.info("Init dataset...")
61
+ for _id, spk, language, text, phones, tone, word2ph in tqdm(
62
+ self.audiopaths_sid_text
63
+ ):
64
+ audiopath = f"{_id}"
65
+ if self.min_text_len <= len(phones) and len(phones) <= self.max_text_len:
66
+ phones = phones.split(" ")
67
+ tone = [int(i) for i in tone.split(" ")]
68
+ word2ph = [int(i) for i in word2ph.split(" ")]
69
+ audiopaths_sid_text_new.append(
70
+ [audiopath, spk, language, text, phones, tone, word2ph]
71
+ )
72
+ lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
73
+ else:
74
+ skipped += 1
75
+ logger.info(
76
+ "skipped: "
77
+ + str(skipped)
78
+ + ", total: "
79
+ + str(len(self.audiopaths_sid_text))
80
+ )
81
+ self.audiopaths_sid_text = audiopaths_sid_text_new
82
+ self.lengths = lengths
83
+
84
+ def get_audio_text_speaker_pair(self, audiopath_sid_text):
85
+ # separate filename, speaker_id and text
86
+ audiopath, sid, language, text, phones, tone, word2ph = audiopath_sid_text
87
+
88
+ bert, ja_bert, phones, tone, language = self.get_text(
89
+ text, word2ph, phones, tone, language, audiopath
90
+ )
91
+
92
+ spec, wav = self.get_audio(audiopath)
93
+ sid = torch.LongTensor([int(self.spk_map[sid])])
94
+ return (phones, spec, wav, sid, tone, language, bert, ja_bert)
95
+
96
+ def get_audio(self, filename):
97
+ audio, sampling_rate = load_wav_to_torch(filename)
98
+ if sampling_rate != self.sampling_rate:
99
+ raise ValueError(
100
+ "{} {} SR doesn't match target {} SR".format(
101
+ filename, sampling_rate, self.sampling_rate
102
+ )
103
+ )
104
+ audio_norm = audio / self.max_wav_value
105
+ audio_norm = audio_norm.unsqueeze(0)
106
+ spec_filename = filename.replace(".wav", ".spec.pt")
107
+ if self.use_mel_spec_posterior:
108
+ spec_filename = spec_filename.replace(".spec.pt", ".mel.pt")
109
+ try:
110
+ spec = torch.load(spec_filename)
111
+ except:
112
+ if self.use_mel_spec_posterior:
113
+ spec = mel_spectrogram_torch(
114
+ audio_norm,
115
+ self.filter_length,
116
+ self.n_mel_channels,
117
+ self.sampling_rate,
118
+ self.hop_length,
119
+ self.win_length,
120
+ self.hparams.mel_fmin,
121
+ self.hparams.mel_fmax,
122
+ center=False,
123
+ )
124
+ else:
125
+ spec = spectrogram_torch(
126
+ audio_norm,
127
+ self.filter_length,
128
+ self.sampling_rate,
129
+ self.hop_length,
130
+ self.win_length,
131
+ center=False,
132
+ )
133
+ spec = torch.squeeze(spec, 0)
134
+ torch.save(spec, spec_filename)
135
+ return spec, audio_norm
136
+
137
+ def get_text(self, text, word2ph, phone, tone, language_str, wav_path):
138
+ phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
139
+ if self.add_blank:
140
+ phone = commons.intersperse(phone, 0)
141
+ tone = commons.intersperse(tone, 0)
142
+ language = commons.intersperse(language, 0)
143
+ for i in range(len(word2ph)):
144
+ word2ph[i] = word2ph[i] * 2
145
+ word2ph[0] += 1
146
+ bert_path = wav_path.replace(".wav", ".bert.pt")
147
+ try:
148
+ bert = torch.load(bert_path)
149
+ assert bert.shape[-1] == len(phone)
150
+ except:
151
+ bert = get_bert(text, word2ph, language_str)
152
+ torch.save(bert, bert_path)
153
+ assert bert.shape[-1] == len(phone), phone
154
+
155
+ if language_str == "ZH":
156
+ bert = bert
157
+ ja_bert = torch.zeros(768, len(phone))
158
+ elif language_str == "JA":
159
+ ja_bert = bert
160
+ bert = torch.zeros(1024, len(phone))
161
+ else:
162
+ bert = torch.zeros(1024, len(phone))
163
+ ja_bert = torch.zeros(768, len(phone))
164
+ assert bert.shape[-1] == len(phone), (
165
+ bert.shape,
166
+ len(phone),
167
+ sum(word2ph),
168
+ p1,
169
+ p2,
170
+ t1,
171
+ t2,
172
+ pold,
173
+ pold2,
174
+ word2ph,
175
+ text,
176
+ w2pho,
177
+ )
178
+ phone = torch.LongTensor(phone)
179
+ tone = torch.LongTensor(tone)
180
+ language = torch.LongTensor(language)
181
+ return bert, ja_bert, phone, tone, language
182
+
183
+ def get_sid(self, sid):
184
+ sid = torch.LongTensor([int(sid)])
185
+ return sid
186
+
187
+ def __getitem__(self, index):
188
+ return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
189
+
190
+ def __len__(self):
191
+ return len(self.audiopaths_sid_text)
192
+
193
+
194
+ class TextAudioSpeakerCollate:
195
+ """Zero-pads model inputs and targets"""
196
+
197
+ def __init__(self, return_ids=False):
198
+ self.return_ids = return_ids
199
+
200
+ def __call__(self, batch):
201
+ """Collate's training batch from normalized text, audio and speaker identities
202
+ PARAMS
203
+ ------
204
+ batch: [text_normalized, spec_normalized, wav_normalized, sid]
205
+ """
206
+ # Right zero-pad all one-hot text sequences to max input length
207
+ _, ids_sorted_decreasing = torch.sort(
208
+ torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True
209
+ )
210
+
211
+ max_text_len = max([len(x[0]) for x in batch])
212
+ max_spec_len = max([x[1].size(1) for x in batch])
213
+ max_wav_len = max([x[2].size(1) for x in batch])
214
+
215
+ text_lengths = torch.LongTensor(len(batch))
216
+ spec_lengths = torch.LongTensor(len(batch))
217
+ wav_lengths = torch.LongTensor(len(batch))
218
+ sid = torch.LongTensor(len(batch))
219
+
220
+ text_padded = torch.LongTensor(len(batch), max_text_len)
221
+ tone_padded = torch.LongTensor(len(batch), max_text_len)
222
+ language_padded = torch.LongTensor(len(batch), max_text_len)
223
+ bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len)
224
+ ja_bert_padded = torch.FloatTensor(len(batch), 768, max_text_len)
225
+
226
+ spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
227
+ wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
228
+ text_padded.zero_()
229
+ tone_padded.zero_()
230
+ language_padded.zero_()
231
+ spec_padded.zero_()
232
+ wav_padded.zero_()
233
+ bert_padded.zero_()
234
+ ja_bert_padded.zero_()
235
+ for i in range(len(ids_sorted_decreasing)):
236
+ row = batch[ids_sorted_decreasing[i]]
237
+
238
+ text = row[0]
239
+ text_padded[i, : text.size(0)] = text
240
+ text_lengths[i] = text.size(0)
241
+
242
+ spec = row[1]
243
+ spec_padded[i, :, : spec.size(1)] = spec
244
+ spec_lengths[i] = spec.size(1)
245
+
246
+ wav = row[2]
247
+ wav_padded[i, :, : wav.size(1)] = wav
248
+ wav_lengths[i] = wav.size(1)
249
+
250
+ sid[i] = row[3]
251
+
252
+ tone = row[4]
253
+ tone_padded[i, : tone.size(0)] = tone
254
+
255
+ language = row[5]
256
+ language_padded[i, : language.size(0)] = language
257
+
258
+ bert = row[6]
259
+ bert_padded[i, :, : bert.size(1)] = bert
260
+
261
+ ja_bert = row[7]
262
+ ja_bert_padded[i, :, : ja_bert.size(1)] = ja_bert
263
+
264
+ return (
265
+ text_padded,
266
+ text_lengths,
267
+ spec_padded,
268
+ spec_lengths,
269
+ wav_padded,
270
+ wav_lengths,
271
+ sid,
272
+ tone_padded,
273
+ language_padded,
274
+ bert_padded,
275
+ ja_bert_padded,
276
+ )
277
+
278
+
279
+ class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
280
+ """
281
+ Maintain similar input lengths in a batch.
282
+ Length groups are specified by boundaries.
283
+ Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
284
+
285
+ It removes samples which are not included in the boundaries.
286
+ Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
287
+ """
288
+
289
+ def __init__(
290
+ self,
291
+ dataset,
292
+ batch_size,
293
+ boundaries,
294
+ num_replicas=None,
295
+ rank=None,
296
+ shuffle=True,
297
+ ):
298
+ super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
299
+ self.lengths = dataset.lengths
300
+ self.batch_size = batch_size
301
+ self.boundaries = boundaries
302
+
303
+ self.buckets, self.num_samples_per_bucket = self._create_buckets()
304
+ self.total_size = sum(self.num_samples_per_bucket)
305
+ self.num_samples = self.total_size // self.num_replicas
306
+
307
+ def _create_buckets(self):
308
+ buckets = [[] for _ in range(len(self.boundaries) - 1)]
309
+ for i in range(len(self.lengths)):
310
+ length = self.lengths[i]
311
+ idx_bucket = self._bisect(length)
312
+ if idx_bucket != -1:
313
+ buckets[idx_bucket].append(i)
314
+
315
+ try:
316
+ for i in range(len(buckets) - 1, 0, -1):
317
+ if len(buckets[i]) == 0:
318
+ buckets.pop(i)
319
+ self.boundaries.pop(i + 1)
320
+ assert all(len(bucket) > 0 for bucket in buckets)
321
+ # When one bucket is not traversed
322
+ except Exception as e:
323
+ print("Bucket warning ", e)
324
+ for i in range(len(buckets) - 1, -1, -1):
325
+ if len(buckets[i]) == 0:
326
+ buckets.pop(i)
327
+ self.boundaries.pop(i + 1)
328
+
329
+ num_samples_per_bucket = []
330
+ for i in range(len(buckets)):
331
+ len_bucket = len(buckets[i])
332
+ total_batch_size = self.num_replicas * self.batch_size
333
+ rem = (
334
+ total_batch_size - (len_bucket % total_batch_size)
335
+ ) % total_batch_size
336
+ num_samples_per_bucket.append(len_bucket + rem)
337
+ return buckets, num_samples_per_bucket
338
+
339
+ def __iter__(self):
340
+ # deterministically shuffle based on epoch
341
+ g = torch.Generator()
342
+ g.manual_seed(self.epoch)
343
+
344
+ indices = []
345
+ if self.shuffle:
346
+ for bucket in self.buckets:
347
+ indices.append(torch.randperm(len(bucket), generator=g).tolist())
348
+ else:
349
+ for bucket in self.buckets:
350
+ indices.append(list(range(len(bucket))))
351
+
352
+ batches = []
353
+ for i in range(len(self.buckets)):
354
+ bucket = self.buckets[i]
355
+ len_bucket = len(bucket)
356
+ if len_bucket == 0:
357
+ continue
358
+ ids_bucket = indices[i]
359
+ num_samples_bucket = self.num_samples_per_bucket[i]
360
+
361
+ # add extra samples to make it evenly divisible
362
+ rem = num_samples_bucket - len_bucket
363
+ ids_bucket = (
364
+ ids_bucket
365
+ + ids_bucket * (rem // len_bucket)
366
+ + ids_bucket[: (rem % len_bucket)]
367
+ )
368
+
369
+ # subsample
370
+ ids_bucket = ids_bucket[self.rank :: self.num_replicas]
371
+
372
+ # batching
373
+ for j in range(len(ids_bucket) // self.batch_size):
374
+ batch = [
375
+ bucket[idx]
376
+ for idx in ids_bucket[
377
+ j * self.batch_size : (j + 1) * self.batch_size
378
+ ]
379
+ ]
380
+ batches.append(batch)
381
+
382
+ if self.shuffle:
383
+ batch_ids = torch.randperm(len(batches), generator=g).tolist()
384
+ batches = [batches[i] for i in batch_ids]
385
+ self.batches = batches
386
+
387
+ assert len(self.batches) * self.batch_size == self.num_samples
388
+ return iter(self.batches)
389
+
390
+ def _bisect(self, x, lo=0, hi=None):
391
+ if hi is None:
392
+ hi = len(self.boundaries) - 1
393
+
394
+ if hi > lo:
395
+ mid = (hi + lo) // 2
396
+ if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
397
+ return mid
398
+ elif x <= self.boundaries[mid]:
399
+ return self._bisect(x, lo, mid)
400
+ else:
401
+ return self._bisect(x, mid + 1, hi)
402
+ else:
403
+ return -1
404
+
405
+ def __len__(self):
406
+ return self.num_samples // self.batch_size
image/image.png ADDED
image//343/201/202/343/201/223.png ADDED
image//343/201/223/343/201/223/343/202/215.png ADDED
image//343/201/235/343/202/210.png ADDED
image//343/201/237/343/201/210.png ADDED
image//343/201/244/343/201/217/343/201/227.png ADDED
image//343/201/244/343/201/220/343/201/277.png ADDED
image//343/201/253/343/202/203/343/202/200.png ADDED
image//343/201/257/343/201/220/343/201/277.png ADDED
image//343/201/262/343/201/276/343/202/212.png ADDED
image//343/201/276/343/201/227/343/202/215.png ADDED
image//343/201/276/343/201/231/343/201/215.png ADDED
image//343/202/212/343/201/277.png ADDED
image//343/202/244/343/203/264.png ADDED
image//343/203/201/343/203/245/343/203/201/343/203/245.png ADDED
image//343/203/221/343/203/254/343/202/252.png ADDED
image//343/203/236/343/202/271/343/202/255/343/203/263/343/202/260.png ADDED
image//343/203/237/343/203/203/343/202/267/343/202/247/343/203/253.png ADDED
image//343/203/242/343/202/253.png ADDED
image//343/203/252/343/202/265.png ADDED
image//343/203/254/343/202/244/343/203/244.png ADDED
image//343/203/255/343/203/203/343/202/257.png ADDED
image//344/270/203/346/267/261.png ADDED
image//345/210/235/350/217/257.png ADDED