File size: 9,246 Bytes
879cbd2
5422b18
879cbd2
5422b18
 
 
879cbd2
 
 
 
 
 
 
 
 
 
5422b18
 
 
 
 
 
 
879cbd2
 
5422b18
879cbd2
5422b18
 
 
 
879cbd2
5422b18
 
 
879cbd2
28fb579
 
 
 
 
 
 
 
 
 
 
 
 
879cbd2
 
 
 
 
 
42b63da
 
879cbd2
5422b18
 
 
 
 
 
 
 
 
 
879cbd2
5422b18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
879cbd2
5422b18
879cbd2
 
5422b18
 
 
 
 
 
 
 
879cbd2
 
 
5422b18
879cbd2
 
 
 
 
5422b18
 
879cbd2
 
 
 
5422b18
 
879cbd2
 
5422b18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
879cbd2
 
c864f13
 
 
 
 
879cbd2
5422b18
 
 
 
879cbd2
 
 
5422b18
c864f13
5422b18
c864f13
 
879cbd2
0a949ac
42b63da
0a949ac
879cbd2
 
 
 
 
 
 
 
 
 
 
 
ccbc190
 
 
5422b18
c864f13
 
 
 
879cbd2
 
0a949ac
 
ccbc190
879cbd2
0a949ac
879cbd2
ccbc190
879cbd2
0a949ac
879cbd2
 
0a949ac
879cbd2
 
0a949ac
879cbd2
ccbc190
5422b18
 
 
879cbd2
0a949ac
879cbd2
 
 
 
 
 
 
 
 
 
5422b18
879cbd2
 
0a949ac
879cbd2
5422b18
 
0a949ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# flake8: noqa: E402
import os
import logging

import re_matching

logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

logging.basicConfig(
    level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)

logger = logging.getLogger(__name__)

import warnings

warnings.filterwarnings("ignore", category=UserWarning, module="gradio.blocks")


import re
import torch
import utils
from infer import infer, latest_version, get_net_g
import gradio as gr
import numpy as np
from tools.sentence import extrac, is_japanese, is_chinese
import sys, os
import math
net_g = None

cara_list = ["ひまり","たえ","彩","日菜","美咲","ましろ","燐子","香子","珠緒","たえ"]

BandList = {
    
        "PoppinParty":["香澄","有咲","たえ","りみ","沙綾"],
        "Afterglow":["蘭","モカ","ひまり","巴","つぐみ"],
        "HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"],
        "PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"],
        "Roselia":["友希那","紗夜","リサ","燐子","あこ"],
        "RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"],
        "Morfonica":["ましろ","瑠唯","つくし","七深","透子"],
        "MyGo&AveMujica(Part)":["燈","愛音","そよ","立希","楽奈","祥子","睦","海鈴"],
        "圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"],
        "凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"],
        "弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"],
        "西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"]
}

if sys.platform == "darwin" and torch.backends.mps.is_available():
    device = "mps"
    os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
else:
    #device = "cuda"
    device = "cpu"

def generate_audio(
    text,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    speaker,
    language,
):
    audio_list = []
    with torch.no_grad():
        if language == 'Auto':
            language = "EN"
            if is_japanese(text):
                language = "JP"
            elif is_chinese(text):
                language = "ZH"
        print(text+":"+language)
        audio = infer(
            text,
            sdp_ratio=sdp_ratio,
            noise_scale=noise_scale,
            noise_scale_w=noise_scale_w,
            length_scale=length_scale,
            sid=speaker,
            language=language,
            hps=hps,
            net_g=net_g,
            device=device,
        )
    return audio

def tts_fn(
    text: str,
    speaker,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    language,
    LongSentence,
):
    if not LongSentence:
        with torch.no_grad():
            audio = generate_audio(
                text,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
                speaker=speaker,
                language= language,
            )
            torch.cuda.empty_cache()
        return (hps.data.sampling_rate, audio)
    else:

        final_list = extrac(text)
        audio_fin = []
        for sentence in final_list:
            if len(sentence) > 1:
                with torch.no_grad():
                    audio = generate_audio(
                        sentence,
                        sdp_ratio=sdp_ratio,
                        noise_scale=noise_scale,
                        noise_scale_w=noise_scale_w,
                        length_scale=length_scale,
                        speaker=speaker,
                        language= language,
                    )
                silence_frames = int(math.log(len(sentence)+1, 1000) * 44010) if is_chinese(sentence) else int(math.log(len(sentence)+1, 3000) * 44010)
                silence_data = np.zeros((silence_frames,), dtype=audio.dtype)
                audio_fin.append(audio)
                audio_fin.append(silence_data)
        return (hps.data.sampling_rate, np.concatenate(audio_fin))

def loadmodel(model):
    _ = net_g.eval()
    _ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True)
    return "success"

if __name__ == "__main__":
    hps = utils.get_hparams_from_file('Data/BangDream/config.json')
    version = hps.version if hasattr(hps, "version") else latest_version
    net_g = get_net_g(
        model_path='Data/BangDream/models/G_10000.pth', version=version, device=device, hps=hps
    )
    speaker_ids = hps.data.spk2id
    speakers = list(speaker_ids.keys())
    languages = [ "Auto", "ZH", "JP"]
    modelPaths = []
    for dirpath, dirnames, filenames in os.walk("Data/BangDream/models/"):
        for filename in filenames:
            modelPaths.append(os.path.join(dirpath, filename))
    with gr.Blocks() as app:
        gr.Markdown(
             f"少歌邦邦全员TTS,使用本模型请严格遵守法律法规!\现已支持日语bert推理<a href='https://huggingface.co/spaces/Mahiruoshi/MyGO_VIts-bert/'>上一版本模型</a>及V1.0版本模型\n 发布二创作品请注明项目和本模型作者<a href='https://space.bilibili.com/19874615/'>B站@Mahiroshi</a>及项目链接\n从 <a href='https://nijigaku.top/2023/10/03/BangDreamTTS/'>我的博客站点</a> 查看使用说明</a>"
        )
        for band in BandList:
            with gr.TabItem(band):
                for name in BandList[band]:
                    with gr.TabItem(name):
                        with gr.Row():
                            with gr.Column():
                                with gr.Row():
                                    gr.Markdown(
                                        '<div align="center">'
                                        f'<img style="width:auto;height:400px;" src="file/image/{name}.png">' 
                                        '</div>'
                                    )
                                length_scale = gr.Slider(
                                        minimum=0.1, maximum=2, value=1, step=0.01, label="语速调节"
                                    )
                                with gr.Accordion(label="切换模型", open=False):
                                    modelstrs = gr.Dropdown(label = "模型", choices = modelPaths, value = modelPaths[0], type = "value")
                                    btnMod = gr.Button("载入模型")
                                    statusa = gr.TextArea()
                                    btnMod.click(loadmodel, inputs=[modelstrs], outputs = [statusa])
                            with gr.Column():
                                text = gr.TextArea(
                                    label="输入纯日语或者中文",
                                    placeholder="输入纯日语或者中文",
                                    value="有个人躺在地上,哀嚎......\n有个人睡着了,睡在盒子里。\n我要把它打开,看看他的梦是什么。",
                                )                                
                                btn = gr.Button("点击生成", variant="primary")
                                audio_output = gr.Audio(label="Output Audio")
                                with gr.Accordion(label="其它参数设定", open=False):
                                    sdp_ratio = gr.Slider(
                                    minimum=0, maximum=1, value=0.2, step=0.01, label="SDP/DP混合比"
                                    )
                                    noise_scale = gr.Slider(
                                        minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节"
                                    )
                                    noise_scale_w = gr.Slider(
                                        minimum=0.1, maximum=2, value=0.8, step=0.01, label="音素长度"
                                    )
                                    LongSentence = gr.Checkbox(value=True, label="Generate LongSentence")
                                    language = gr.Dropdown(
                                    choices=languages, value=languages[0], label="选择语言(默认自动)"
                                    )
                                    speaker = gr.Dropdown(
                                        choices=speakers, value=name, label="说话人"
                                    )
                    btn.click(
                        tts_fn,
                        inputs=[
                            text,
                            speaker,
                            sdp_ratio,
                            noise_scale,
                            noise_scale_w,
                            length_scale,
                            language,
                            LongSentence,
                        ],
                        outputs=[audio_output],
                    )

print("推理页面已开启!")
app.launch()