Spaces:
Running
Running
File size: 10,383 Bytes
879cbd2 5422b18 879cbd2 5422b18 879cbd2 5422b18 352a927 5422b18 879cbd2 5422b18 879cbd2 5422b18 352a927 879cbd2 5422b18 879cbd2 28fb579 879cbd2 42b63da 879cbd2 5422b18 879cbd2 5422b18 352a927 5422b18 879cbd2 2927e53 879cbd2 5422b18 879cbd2 5422b18 879cbd2 5422b18 879cbd2 5422b18 879cbd2 5422b18 879cbd2 c864f13 879cbd2 5422b18 879cbd2 5422b18 c864f13 5422b18 c864f13 879cbd2 352a927 879cbd2 ccbc190 352a927 5422b18 c864f13 879cbd2 0a949ac ccbc190 879cbd2 0a949ac 879cbd2 352a927 ccbc190 879cbd2 0a949ac 879cbd2 0a949ac 879cbd2 0a949ac 879cbd2 5422b18 879cbd2 0a949ac 879cbd2 5422b18 879cbd2 0a949ac 879cbd2 5422b18 0a949ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# flake8: noqa: E402
import os
import logging
import re_matching
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.basicConfig(
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)
logger = logging.getLogger(__name__)
import warnings
warnings.filterwarnings("ignore", category=UserWarning, module="gradio.blocks")
from datetime import datetime
import re
import torch
import utils
from infer import infer, latest_version, get_net_g
import gradio as gr
import numpy as np
from tools.sentence import extrac, is_japanese, is_chinese
import sys, os
import math
from tools.translate import translate
net_g = None
cara_list = ["ひまり","たえ","彩","日菜","美咲","ましろ","燐子","香子","珠緒","たえ"]
BandList = {
"PoppinParty":["香澄","有咲","たえ","りみ","沙綾"],
"Afterglow":["蘭","モカ","ひまり","巴","つぐみ"],
"HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"],
"PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"],
"Roselia":["友希那","紗夜","リサ","燐子","あこ"],
"RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"],
"Morfonica":["ましろ","瑠唯","つくし","七深","透子"],
"MyGo&AveMujica(Part)":["燈","愛音","そよ","立希","楽奈","祥子","睦","海鈴"],
"圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"],
"凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"],
"弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"],
"西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"]
}
if sys.platform == "darwin" and torch.backends.mps.is_available():
device = "mps"
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
else:
device = "cpu"
def generate_audio(
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
speaker,
language,
):
audio_list = []
with torch.no_grad():
if language == 'Auto':
language = "EN"
if is_japanese(text):
language = "JP"
elif is_chinese(text):
language = "ZH"
current_time = datetime.now()
print(str(current_time)+':'+str(speaker)+ text+":"+language)
audio = infer(
text,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
language=language,
hps=hps,
net_g=net_g,
device=device,
)
return gr.processing_utils.convert_to_16_bit_wav(audio)
def tts_fn(
text: str,
speaker,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
language,
LongSentence,
):
if not LongSentence:
with torch.no_grad():
audio = generate_audio(
text,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
speaker=speaker,
language= language,
)
torch.cuda.empty_cache()
return (hps.data.sampling_rate, audio)
else:
final_list = extrac(text)
audio_fin = []
for sentence in final_list:
if len(sentence) > 1:
with torch.no_grad():
audio = generate_audio(
sentence,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
speaker=speaker,
language= language,
)
silence_frames = int(math.log(len(sentence)+1, 1000) * 44010) if is_chinese(sentence) else int(math.log(len(sentence)+1, 3000) * 44010)
silence_data = np.zeros((silence_frames,), dtype=audio.dtype)
audio_fin.append(audio)
audio_fin.append(silence_data)
return (hps.data.sampling_rate, np.concatenate(audio_fin))
def loadmodel(model):
_ = net_g.eval()
_ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True)
return "success"
if __name__ == "__main__":
hps = utils.get_hparams_from_file('Data/BangDream/config.json')
version = hps.version if hasattr(hps, "version") else latest_version
net_g = get_net_g(
model_path='Data/BangDream/models/G_10000.pth', version=version, device=device, hps=hps
)
speaker_ids = hps.data.spk2id
speakers = list(speaker_ids.keys())
languages = [ "Auto", "ZH", "JP"]
modelPaths = []
for dirpath, dirnames, filenames in os.walk("Data/BangDream/models/"):
for filename in filenames:
modelPaths.append(os.path.join(dirpath, filename))
with gr.Blocks() as app:
gr.Markdown(value="""
少歌邦邦全员在线语音合成(Bert-Vits2)\n
作者:B站@Mahiroshi https://space.bilibili.com/19874615\n
声音归属:BangDream及少歌手游\n
Bert-VITS2项目:https://github.com/Stardust-minus/Bert-VITS2\n
使用参考: https://nijigaku.top/2023/10/03/BangDreamTTS\n
数据集制作: https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/tree/main/%E7%88%AC%E8%99%AB
服务器启动示例: https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/blob/main/server.py\n
使用本模型请严格遵守法律法规!禁止生成任何有损声优或者企划的内容!!!!!\n
このモデルを使用する際は法律法規を厳守してください!声優や企画に損害を与える内容の生成は禁止です!!!!!\n
Please strictly follow the laws in your country and regulations when using this model! It is prohibited to generate any content that is harmful to others!!!!!\n
发布二创作品请标注本项目作者及链接、作品使用Bert-VITS2 AI生成!\n
""")
for band in BandList:
with gr.TabItem(band):
for name in BandList[band]:
with gr.TabItem(name):
with gr.Row():
with gr.Column():
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<img style="width:auto;height:400px;" src="file/image/{name}.png">'
'</div>'
)
length_scale = gr.Slider(
minimum=0.1, maximum=2, value=1, step=0.01, label="语速调节"
)
LongSentence = gr.Checkbox(value=True, label="自动拆分句子")
with gr.Accordion(label="切换模型", open=False):
modelstrs = gr.Dropdown(label = "模型", choices = modelPaths, value = modelPaths[0], type = "value")
btnMod = gr.Button("载入模型")
statusa = gr.TextArea()
btnMod.click(loadmodel, inputs=[modelstrs], outputs = [statusa])
with gr.Column():
text = gr.TextArea(
label="输入纯日语或者中文",
placeholder="输入纯日语或者中文",
value="有个人躺在地上,哀嚎......\n有个人睡着了,睡在盒子里。\n我要把它打开,看看他的梦是什么。",
)
btn = gr.Button("点击生成", variant="primary")
audio_output = gr.Audio(label="Output Audio")
btntran = gr.Button("快速中翻日")
translateResult = gr.TextArea("从这复制翻译后的文本")
btntran.click(translate, inputs=[text], outputs = [translateResult])
with gr.Accordion(label="其它参数设定", open=False):
sdp_ratio = gr.Slider(
minimum=0, maximum=1, value=0.2, step=0.01, label="SDP/DP混合比"
)
noise_scale = gr.Slider(
minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节"
)
noise_scale_w = gr.Slider(
minimum=0.1, maximum=2, value=0.8, step=0.01, label="音素长度"
)
language = gr.Dropdown(
choices=languages, value=languages[0], label="选择语言(默认自动)"
)
speaker = gr.Dropdown(
choices=speakers, value=name, label="说话人"
)
btn.click(
tts_fn,
inputs=[
text,
speaker,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
language,
LongSentence,
],
outputs=[audio_output],
)
print("推理页面已开启!")
app.launch()
|