medical_soap / app.py
karthi311's picture
Update app.py
5ec52c5 verified
raw
history blame
7.9 kB
import torch
import gradio as gr
from transformers import AutoTokenizer
from gptq import GPTQForCausalLM # GPTQ model handler
from pydub import AudioSegment
from sentence_transformers import SentenceTransformer, util
import spacy
from subprocess import Popen, PIPE
import json
from faster_whisper import WhisperModel
# Audio conversion from MP4 to MP3
def convert_mp4_to_mp3(mp4_path, mp3_path):
try:
audio = AudioSegment.from_file(mp4_path, format="mp4")
audio.export(mp3_path, format="mp3")
except Exception as e:
raise RuntimeError(f"Error converting MP4 to MP3: {e}")
# Check if CUDA is available for GPU acceleration
if torch.cuda.is_available():
device = "cuda"
compute_type = "float16"
else:
device = "cpu"
compute_type = "int8"
# Load Faster Whisper Model for transcription
def load_faster_whisper():
model = WhisperModel("deepdml/faster-whisper-large-v3-turbo-ct2", device=device, compute_type=compute_type)
return model
# Load GPTQ Mistral-7B model
def load_mistral_model():
model_name = "TheBloke/Mistral-7B-Instruct-v0.2-GPTQ"
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load the GPTQ model
model = GPTQForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
return model, tokenizer
# Load NLP model and other helpers
nlp = spacy.load("en_core_web_sm")
embedder = SentenceTransformer("all-MiniLM-L6-v2")
tokenizer = AutoTokenizer.from_pretrained("Mahalingam/DistilBart-Med-Summary")
model = AutoModelForSeq2SeqLM.from_pretrained("Mahalingam/DistilBart-Med-Summary")
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
soap_prompts = {
"subjective": "Personal reports, symptoms described by patients, or personal health concerns. Details reflecting individual symptoms or health descriptions.",
"objective": "Observable facts, clinical findings, professional observations, specific medical specialties, and diagnoses.",
"assessment": "Clinical assessments, expertise-based opinions on conditions, and significance of medical interventions. Focused on medical evaluations or patient condition summaries.",
"plan": "Future steps, recommendations for treatment, follow-up instructions, and healthcare management plans."
}
soap_embeddings = {section: embedder.encode(prompt, convert_to_tensor=True) for section, prompt in soap_prompts.items()}
# Llama query function (same as before)
def llama_query(user_prompt, soap_note, model="llama3.2"):
combined_prompt = f"User Instructions:\n{user_prompt}\n\nContext:\n{soap_note}"
try:
process = Popen(['ollama', 'run', model], stdin=PIPE, stdout=PIPE, stderr=PIPE, text=True, encoding='utf-8')
stdout, stderr = process.communicate(input=combined_prompt)
if process.returncode != 0:
return f"Error: {stderr.strip()}"
return stdout.strip()
except Exception as e:
return f"Unexpected error: {str(e)}"
# Convert the response to JSON format
def convert_to_json(template):
try:
lines = template.split("\n")
json_data = {}
section = None
for line in lines:
if line.endswith(":"):
section = line[:-1]
json_data[section] = []
elif section:
json_data[section].append(line.strip())
return json.dumps(json_data, indent=2)
except Exception as e:
return f"Error converting to JSON: {e}"
# Transcription using Faster Whisper
def transcribe_audio(mp4_path):
try:
print(f"Processing MP4 file: {mp4_path}")
model = load_faster_whisper()
mp3_path = "output_audio.mp3"
convert_mp4_to_mp3(mp4_path, mp3_path)
# Transcribe using Faster Whisper
result, segments = model.transcribe(mp3_path, beam_size=5)
transcription = " ".join([seg.text for seg in segments])
return transcription
except Exception as e:
return f"Error during transcription: {e}"
# Classify the sentence to the correct SOAP section
def classify_sentence(sentence):
similarities = {section: util.pytorch_cos_sim(embedder.encode(sentence), soap_embeddings[section]) for section in soap_prompts.keys()}
return max(similarities, key=similarities.get)
# Summarize the section if it's too long
def summarize_section(section_text):
if len(section_text.split()) < 50:
return section_text
target_length = int(len(section_text.split()) * 0.65)
inputs = tokenizer.encode(section_text, return_tensors="pt", truncation=True, max_length=1024)
summary_ids = model.generate(
inputs,
max_length=target_length,
min_length=int(target_length * 0.60),
length_penalty=1.0,
num_beams=4
)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
# Analyze the SOAP content and divide into sections
def soap_analysis(text):
doc = nlp(text)
soap_note = {section: "" for section in soap_prompts.keys()}
for sentence in doc.sents:
section = classify_sentence(sentence.text)
soap_note[section] += sentence.text + " "
# Summarize each section of the SOAP note
for section in soap_note:
soap_note[section] = summarize_section(soap_note[section].strip())
return format_soap_output(soap_note)
# Format the SOAP note output
def format_soap_output(soap_note):
return (
f"Subjective:\n{soap_note['subjective']}\n\n"
f"Objective:\n{soap_note['objective']}\n\n"
f"Assessment:\n{soap_note['assessment']}\n\n"
f"Plan:\n{soap_note['plan']}\n"
)
# Process file function for audio to SOAP
def process_file(mp4_file, user_prompt):
transcription = transcribe_audio(mp4_file.name)
print("Transcribed Text: ", transcription)
soap_note = soap_analysis(transcription)
print("SOAP Notes: ", soap_note)
template_output = llama_query(user_prompt, soap_note)
print("Template: ", template_output)
json_output = convert_to_json(template_output)
return soap_note, template_output, json_output
# Process text function for text input to SOAP
def process_text(text, user_prompt):
soap_note = soap_analysis(text)
print(soap_note)
template_output = llama_query(user_prompt, soap_note)
print(template_output)
json_output = convert_to_json(template_output)
return soap_note, template_output, json_output
# Launch the Gradio interface
def launch_gradio():
with gr.Blocks(theme=gr.themes.Default()) as demo:
gr.Markdown("# SOAP Note Generator")
with gr.Tab("Audio to SOAP"):
gr.Interface(
fn=process_file,
inputs=[
gr.File(label="Upload MP4 File"),
gr.Textbox(label="Enter Prompt for Template", placeholder="Enter a detailed prompt...", lines=6),
],
outputs=[
gr.Textbox(label="SOAP Note"),
gr.Textbox(label="Generated Template from Mistral-7B Instruct"),
gr.Textbox(label="JSON Output"),
],
)
with gr.Tab("Text to SOAP"):
gr.Interface(
fn=process_text,
inputs=[
gr.Textbox(label="Enter Text", placeholder="Enter medical notes...", lines=6),
gr.Textbox(label="Enter Prompt for Template", placeholder="Enter a detailed prompt...", lines=6),
],
outputs=[
gr.Textbox(label="SOAP Note"),
gr.Textbox(label="Generated Template from Mistral-7B Instruct"),
gr.Textbox(label="JSON Output"),
],
)
demo.launch(share=True, debug=True)
# Run the Gradio app
if __name__ == "__main__":
launch_gradio()