Spaces:
Runtime error
Runtime error
File size: 7,903 Bytes
d648110 5ec52c5 d648110 5ec52c5 d648110 5ec52c5 d648110 5ec52c5 d648110 5ec52c5 d648110 5ec52c5 d648110 5ec52c5 d648110 5ec52c5 d648110 5ec52c5 d648110 5ec52c5 d648110 5ec52c5 d648110 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import torch
import gradio as gr
from transformers import AutoTokenizer
from gptq import GPTQForCausalLM # GPTQ model handler
from pydub import AudioSegment
from sentence_transformers import SentenceTransformer, util
import spacy
from subprocess import Popen, PIPE
import json
from faster_whisper import WhisperModel
# Audio conversion from MP4 to MP3
def convert_mp4_to_mp3(mp4_path, mp3_path):
try:
audio = AudioSegment.from_file(mp4_path, format="mp4")
audio.export(mp3_path, format="mp3")
except Exception as e:
raise RuntimeError(f"Error converting MP4 to MP3: {e}")
# Check if CUDA is available for GPU acceleration
if torch.cuda.is_available():
device = "cuda"
compute_type = "float16"
else:
device = "cpu"
compute_type = "int8"
# Load Faster Whisper Model for transcription
def load_faster_whisper():
model = WhisperModel("deepdml/faster-whisper-large-v3-turbo-ct2", device=device, compute_type=compute_type)
return model
# Load GPTQ Mistral-7B model
def load_mistral_model():
model_name = "TheBloke/Mistral-7B-Instruct-v0.2-GPTQ"
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load the GPTQ model
model = GPTQForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
return model, tokenizer
# Load NLP model and other helpers
nlp = spacy.load("en_core_web_sm")
embedder = SentenceTransformer("all-MiniLM-L6-v2")
tokenizer = AutoTokenizer.from_pretrained("Mahalingam/DistilBart-Med-Summary")
model = AutoModelForSeq2SeqLM.from_pretrained("Mahalingam/DistilBart-Med-Summary")
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
soap_prompts = {
"subjective": "Personal reports, symptoms described by patients, or personal health concerns. Details reflecting individual symptoms or health descriptions.",
"objective": "Observable facts, clinical findings, professional observations, specific medical specialties, and diagnoses.",
"assessment": "Clinical assessments, expertise-based opinions on conditions, and significance of medical interventions. Focused on medical evaluations or patient condition summaries.",
"plan": "Future steps, recommendations for treatment, follow-up instructions, and healthcare management plans."
}
soap_embeddings = {section: embedder.encode(prompt, convert_to_tensor=True) for section, prompt in soap_prompts.items()}
# Llama query function (same as before)
def llama_query(user_prompt, soap_note, model="llama3.2"):
combined_prompt = f"User Instructions:\n{user_prompt}\n\nContext:\n{soap_note}"
try:
process = Popen(['ollama', 'run', model], stdin=PIPE, stdout=PIPE, stderr=PIPE, text=True, encoding='utf-8')
stdout, stderr = process.communicate(input=combined_prompt)
if process.returncode != 0:
return f"Error: {stderr.strip()}"
return stdout.strip()
except Exception as e:
return f"Unexpected error: {str(e)}"
# Convert the response to JSON format
def convert_to_json(template):
try:
lines = template.split("\n")
json_data = {}
section = None
for line in lines:
if line.endswith(":"):
section = line[:-1]
json_data[section] = []
elif section:
json_data[section].append(line.strip())
return json.dumps(json_data, indent=2)
except Exception as e:
return f"Error converting to JSON: {e}"
# Transcription using Faster Whisper
def transcribe_audio(mp4_path):
try:
print(f"Processing MP4 file: {mp4_path}")
model = load_faster_whisper()
mp3_path = "output_audio.mp3"
convert_mp4_to_mp3(mp4_path, mp3_path)
# Transcribe using Faster Whisper
result, segments = model.transcribe(mp3_path, beam_size=5)
transcription = " ".join([seg.text for seg in segments])
return transcription
except Exception as e:
return f"Error during transcription: {e}"
# Classify the sentence to the correct SOAP section
def classify_sentence(sentence):
similarities = {section: util.pytorch_cos_sim(embedder.encode(sentence), soap_embeddings[section]) for section in soap_prompts.keys()}
return max(similarities, key=similarities.get)
# Summarize the section if it's too long
def summarize_section(section_text):
if len(section_text.split()) < 50:
return section_text
target_length = int(len(section_text.split()) * 0.65)
inputs = tokenizer.encode(section_text, return_tensors="pt", truncation=True, max_length=1024)
summary_ids = model.generate(
inputs,
max_length=target_length,
min_length=int(target_length * 0.60),
length_penalty=1.0,
num_beams=4
)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
# Analyze the SOAP content and divide into sections
def soap_analysis(text):
doc = nlp(text)
soap_note = {section: "" for section in soap_prompts.keys()}
for sentence in doc.sents:
section = classify_sentence(sentence.text)
soap_note[section] += sentence.text + " "
# Summarize each section of the SOAP note
for section in soap_note:
soap_note[section] = summarize_section(soap_note[section].strip())
return format_soap_output(soap_note)
# Format the SOAP note output
def format_soap_output(soap_note):
return (
f"Subjective:\n{soap_note['subjective']}\n\n"
f"Objective:\n{soap_note['objective']}\n\n"
f"Assessment:\n{soap_note['assessment']}\n\n"
f"Plan:\n{soap_note['plan']}\n"
)
# Process file function for audio to SOAP
def process_file(mp4_file, user_prompt):
transcription = transcribe_audio(mp4_file.name)
print("Transcribed Text: ", transcription)
soap_note = soap_analysis(transcription)
print("SOAP Notes: ", soap_note)
template_output = llama_query(user_prompt, soap_note)
print("Template: ", template_output)
json_output = convert_to_json(template_output)
return soap_note, template_output, json_output
# Process text function for text input to SOAP
def process_text(text, user_prompt):
soap_note = soap_analysis(text)
print(soap_note)
template_output = llama_query(user_prompt, soap_note)
print(template_output)
json_output = convert_to_json(template_output)
return soap_note, template_output, json_output
# Launch the Gradio interface
def launch_gradio():
with gr.Blocks(theme=gr.themes.Default()) as demo:
gr.Markdown("# SOAP Note Generator")
with gr.Tab("Audio to SOAP"):
gr.Interface(
fn=process_file,
inputs=[
gr.File(label="Upload MP4 File"),
gr.Textbox(label="Enter Prompt for Template", placeholder="Enter a detailed prompt...", lines=6),
],
outputs=[
gr.Textbox(label="SOAP Note"),
gr.Textbox(label="Generated Template from Mistral-7B Instruct"),
gr.Textbox(label="JSON Output"),
],
)
with gr.Tab("Text to SOAP"):
gr.Interface(
fn=process_text,
inputs=[
gr.Textbox(label="Enter Text", placeholder="Enter medical notes...", lines=6),
gr.Textbox(label="Enter Prompt for Template", placeholder="Enter a detailed prompt...", lines=6),
],
outputs=[
gr.Textbox(label="SOAP Note"),
gr.Textbox(label="Generated Template from Mistral-7B Instruct"),
gr.Textbox(label="JSON Output"),
],
)
demo.launch(share=True, debug=True)
# Run the Gradio app
if __name__ == "__main__":
launch_gradio()
|